EEG / ERP in the Same Session

EEG / ERP in the Same Session

Alpert, G. F., Manor, R., Spanier, A. B., Deouell, L. Y., & Geva, A. B. (2014). Spatiotemporal Representations of Rapid Visual Target Detection: A Single-Trial EEG Classification Algorithm. IEEE Transactions on Biomedical Engineering, 61, 2290-2303.

Banerjee, S., Snyder, A. C., Molholm, S., & Foxe, J. J. (2011). Oscillatory Alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: Supramodal or sensory-specific control mechanisms? Journal of Neuroscience, 31, 9923-9932.

Belyusar, D., Snyder, A. C., Frey, H.-P., Harwood, M. R., Wallman, J., & Foxe, J. J. (2013). Oscillatory alpha-band suppression mechanisms during the rapid attentional shifts required to perform an anti-saccade task. NeuroImage, 65, 395-407.

Castellano, M., Plöchl, M., Vicente, R., & Pipa, G. (2014). Neuronal oscillations form parietal/frontal networks during contour integration. Frontiers in Integrative Neuroscience, 8, 64. doi:10.3389/fnint.2014.00064.

Collins, T., Heed, T., & Röder, B. (2010). Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Frontiers in Human Neuroscience. 4:14. doi:10.3389/neuro.09.014.2010.

Dambacher, M., & Kliegl, R. (2007). Synchronizing timelines: Relations between fixation durations and N400 amplitudes during sentence reading. Brain Research, 1155, 147-162.

Dandekar, S., Ding, J., Privitera, C., Carney, T., & Klein, S. A. (2012). The fixation and saccade P3. PLoS ONE 7(11): e48761. doi:10.1371/journal.pone.0048761.

Dandekar, S., Privitera, C., Carney, T., & Klein, S. A. (2012). Neural saccadic response estimation during natural viewing. Journal of Neurophysiology, 107, 1776 – 1790.

de Lissa, P., McArthur, G., Hawelka, S., Palermo, R., Mahajan, Y., & Hutzler, F. (2014). Fixation location on upright and inverted faces modulates the N170, Neuropsychologia, 57, 1-11.

Dias, J. C., Sajda, P., Dmochowski, J. P., & Parra, L. C. (2013). EEG precursors of detected and missed targets during free-viewing search. Journal of Vision, 13(13):13, 1-19,, doi:10.1167/13.13.13.

Diederich, A., Schomburg, A., & van Vugt, M. (2014). Fronto-Central Theta Oscillations Are Related to Oscillations in Saccadic Response Times (SRT): An EEG and Behavioral Data Analysis. PLoS ONE 9(11): e112974. doi:10.1371/journal.pone.0112974.

Fiebelkorn, I. C., Snyder, A. C., Mercier, M. R., Butler, J. S., Molholm, S., & Foxe, J. J. (2013). Cortical cross-frequency coupling predicts perceptual outcomes. NeuroImage, 69, 126-137.

Fischer, T., Graupner, S.-T., Velichkovsky, B.M., & Pannasch, S. (2013). Attentional dynamics during free picture viewing: Evidence from oculomotor behavior and electrocortical activity. Frontiers in Systems Neuroscience, 7:17. doi: 10.3389/fnsys.2013.00017.

Franconeri, S. L., Scimeca, J. M., Roth, J. C., Helseth, S. A., & Kahn, L. E. (2012). Flexible visual processing of spatial relationships. Cognition, 122, 210-227.

Frey, A., Ionescu, G., Lemaire, B., López-Orozco, F., Baccino, T., & Guérin-Dugué, A. (2013). Decision-making in information seeking on texts: an eye-fixation-related potentials investigation. Frontiers in Systems Neuroscience, 7:39. doi: 10.3389/fnsys.2013.00039.

Frey, H.-P., Kelly, S. P., Lalor, E. C., & Foxe, J. J. (2010). Early spatial attentional modulation of inputs to the fovea. Journal of Neuroscience, 30, 4547-4551.

Frey, H.-P., Molholm, S., Lalor, E. C., Russo, N. N., & Foxe, J. J. (2013). Atypical cortical representation of peripheral visual space in children with an autism spectrum disorder. European Journal of Neuroscience, 38, 2125-2138.

Frey, H.-P., Schmid, A. M., Murphy, J. W., Molholm, S., Lalor, E. C., & Foxe, J. J. (2014). Modulation of early cortical processing during divided attention to non-contiguous locations. European Journal of Neuroscience, 39, 1499-1507.

Gais, S., Köster, S., Sprenger, A., Bethke, J., Heide, W., & Kimmig, H. (2008). Sleep is required for improving reaction times after training on a procedural visuo-motor task. Neurobiology of Learning and Memory, 90, 610-615.

Graupner, S.-T., Pannasch, S., & Velichkovsky, B. M. (2011). Saccadic context indicates information processing within visual fixations: Evidence from event-related potentials and eye-movements analysis of the distractor effect. International Journal of Psychophysiology, 80, 54-62.

Graupner, S.-T., Velichkovsky, B. M., Pannasch, S., & Marx, J. (2007). Surprise, surprise: Two distinct components in the visually evoked distractor effect. Psychophysiology, 44, 251-261.

Gutteling, T. P., van Ettinger-Veenstra, H. M., Kenemans, J. L., & Neggers, S. F. W. (2010). Lateralized frontal eye field activity precedes occipital activity shortly before saccades: Evidence for cortico-cortical feedback as a mechanism underlying covert attention shifts. Journal of Cognitive Neuroscience, 22, 1931-1943.

Hamamé, C. M., Vidal, J. R., Perrone-Bertolotti, M., Ossandón, T., Jerbi, K., Kahane, P., Bertrand, O., & Lachaux, J.-P. (2014). Functional selectivity in the human occipitotemporal cortex during natural vision: Evidence from combined intracranial EEG and eye-tracking, NeuroImage, 95, 276-286.

Hassler, U., Friese, U., Martens, U., Trujillo-Barreto, N., & Gruber, T. (2013). Repetition priming effects dissociate between miniature eye movements and induced gamma-band responses in the human electroencephalogram. European Journal of Neuroscience, 38, 2425-2433,

Hemington, K. S., & Reynolds, J. N. (2014). Electroencephalographic correlates of working memory deficits in children with Fetal Alcohol Spectrum Disorder using a single-electrode pair recording device, Clinical Neurophysiology, 125, 2364-2371.

Henderson, J. M., Luke, S. G., Schmidt, J., & Richards, J. E. (2013). Co-registration of eye movements and event-related potentials in connected-text paragraph reading. Frontiers in Systems Neuroscience, 7(28), 1-13. doi: 10.3389/fnsys.2013.00028.

Hong, L., Walz, J. M., & Sajda, P. (2014). Your Eyes Give You Away: Prestimulus Changes in Pupil Diameter Correlate with Poststimulus Task-Related EEG Dynamics. PLoS ONE 9(3): e91321. doi:10.1371/journal.pone.0091321.

Hutzler, F., Fuchs, I., Gagl, B., Schuster, S., Richlan, F., Braun, M., & Hawelka, S. (2013). Parafoveal X-masks interfere with foveal word recognition: evidence from fixation-related brain potentials. Frontiers in System Neuroscience, 7:33. doi: 10.3389/fnsys.2013.00033.

Jangraw, D. C., Wang, J., Lance, B. J., Chang, S. F., & Sajda, P. (2014). Neurally and ocularly informed graph-based models for searching 3D environments. Journal of Neural Engineering, 11, 046003. doi:10.1088/1741-2560/11/4/046003.

Jolij, J., Scholte, H. S., van Gaal, S., Hodgson, T. L., & Lamme, V. A. F. (2011). Act quickly, decide later: Long-latency visual processing underlies perceptual decisions but not reflexive behavior. Journal of Cognitive Neuroscience, 23, 3734-3745.

Kelly, S. P., Foxe, J. J., Newman, G., & Edelman, J. A. (2010). Prepare for conflict: EEG correlates of the anticipation of target competition during overt and covert shifts of visual attention. European Journal of Neuroscience, 31, 1690-1700.

Kamienkowski, J. E., Ison, M. J., Quiroga, R. Q., & Sigman, M. (2012). Fixation-related potentials in visual search: A combined EEG and eye tracking study. Journal of Vision, 12(7):4, 1-20,, doi:10.1167/12.7.4.

Kang, M.-S., & Woodman, G. F. (2014). The neurophysiological index of visual working memory maintenance is not due to load dependent eye movements, Neuropsychologia, 56, 63-72.

Kaunitz, L. N., Kamienkowski, J. E., Varatharajah, A., Sigman, M., Quiroga, R. Q., & Ison, M. J. (2014). Looking for a face in the crowd: Fixation-related potentials in an eye-movement visual search task. NeuroImage, 89, 297-305.

Keren, A. S., Yuval-Greenberg, S., & Deouell, L. Y. (2010). Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression. NeuroImage, 49, 2248-2263.

Körner, C., Braunstein, V., Stangl, M., Schlögl, A., Neuper, C., & Ischebeck, A. (2014). Sequential effects in continued visual search: Using fixation-related potentials to compare distractor processing before and after target detection. Psychophysiology, 51, 385-395.

Kosilo, M., Wuerger, S.M., Craddock, M., Jennings, B.J., Hunt, A.R., & Martinovic, J. (2013). Low-level and high-level modulations of fixational saccades and high frequency oscillatory brain activity in a visual object classification task. Frontiers in Psychology, 4:948. doi: 10.3389/fpsyg.2013.00948.

Kretzschmar, F., Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2009). Parafoveal versus foveal N400s dissociate spreading activation from contextual fit. Neuroreport, 20, 1613-1618.

Kretzschmar, F., Pleimling, D., Hosemann, J., Füssel, S., Bornkessel-Schlesewsky. I., & Schlesewsky, M. (2013). Subjective impressions do not mirror online reading effort: Concurrent EEG-eyetracking evidence from the reading of books and digital media. PLoS ONE 8(2): e56178. doi:10.1371/journal.pone.0056178.

Loughnane, G. M., Shanley, J. P., Lalor, E. C., & O’Connell, R. G. (2015). Behavioral and electrophysiological evidence of opposing lateral visuospatial asymmetries in the upper and lower visual fields. Cortex, 63, 220-231.

MacNamara, A., Schmidt, J., Zelinsky, G. J., & Hajcak, G. (2012). Electrocortical and ocular indices of attention to fearful and neutral faces presented under high and low working memory load. Biological Psychology, 91, 349-356.

Matheson, H., Newman, A. J., Satel, J., & McMullen, P. (2014). Handles of manipulable objects attract covert visual attention: ERP evidence, Brain and Cognition, 86, 17-23.

Mazaheri, A., DiQuattro, N. E., Bengson, J., & Geng, J. J. (2011). Pre-stimulus activity predicts the winner of top-down vs. bottom-up attentional selection. PLoS ONE 6(2): e16243. doi:10.1371/journal.pone.0016243

Morand, S. M., Harvey, M., & Grosbras, M.-H. (2014). Parieto-occipital cortex shows early target selection to faces in a reflexive orienting task. Cerebral Cortex, 24, 898-907.

Nakatani, C., Chehelcheraghi, M., Jarrahi, B., Nakatani, H., & van Leeuwen, C. (2013). Cross-frequency phase synchrony around the saccade period as a correlate of perceiver’s internal state. Frontiers in Systems Neuroscience, 7:18. doi: 10.3389/fnsys.2013.00018.

Nakatani, H., Orlandi, N., & van Leeuwen, C. (2011). Precisely timed oculomotor and parietal EEG activity in perceptual switching. Cognitive Neurodynamics, 5, 399-409.

Nakatani, H., & Van Leeuwen, C. (2013). Antecedent occipital alpha band activity predicts the impact of oculomotor events in perceptual switching. Frontiers in Systems Neuroscience, 7:19. doi: 10.3389/fnsys.2013.00019.

Naue, N., Strüber, D., Fründ, I., Schadow, J., Lenz, D., Rach, S., Körner, U., & Herrmann, C. S. (2011). Gamma in motion: Pattern reversal elicits stronger gamma-band responses than motion. NeuroImage, 55, 808-817.

Nemrodov, D., Anderson, T., Preston, F. F., & Itier, R. J. (2014). Early sensitivity for eyes within faces: A new neuronal account of holistic and featural processing, NeuroImage, 97, 81-94.

Nikolaev, A. R., Nakatani, C., Plomp, G., Jurica, P., & van Leeuwen, C. (2011). Eye fixation-related potentials in free viewing identify encoding failures in change detection. NeuroImage, 56, 1598-1607.

Nikolaev, A.R., Jurica, P., Nakatani, C., Plomp, G., & van Leeuwen, C. (2013). Visual encoding and fixation target selection in free viewing: Presaccadic brain potentials. Frontiers in Systems Neuroscience, 7:26. doi: 10.3389/fnsys.2013.00026.

Ossandón, J. P., Helo, A. V., Montefusco-Siegmund, R., & Maldonado, P. E. (2010). Superposition model predicts EEG occipital activity during free viewing of natural scenes. Journal of Neuroscience, 30, 4787-4795.

Qian, M., Aguilar, M., Zachery, K. N., Privitera, C., Klein, S., Carney, T., & Nolte, L. W. (2009). Decision-level fusion of EEG and pupil features for single-trial visual detection analysis. IEEE Transactions on Biomedical Engineering, 56, 1929-1937.

Park, C., Plank, M., Snider, J., Kim, S., Huang, H. C., Gepshtein, S., Coleman, T., & Poizner, H. (2014). EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: multivariate empirical mode decomposition analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 22 (5), 1083-1096, doi: 10.1109/TNSRE.2014.2332450.

Plöchl, M., Ossandón, J. P., & König, P. (2012). Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Frontiers in Human Neuroscience, 6:278. doi: 10.3389/fnhum.2012.00278.

Polanía, R., Krajbich, I., Grueschow, M., Ruff, C. C. (2014). Neural Oscillations and Synchronization Differentially Support Evidence Accumulation in Perceptual and Value-Based Decision Making, Neuron, 82, 709-720.

Raimondo, F., Kamienkowski, J. E., Sigman, M., & Slezak, D. F. (2012). CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis, Computational Intelligence and Neuroscience, vol. 2012, Article ID 206972, 8 pages, 2012. doi:10.1155/2012/206972.

Rämä, P., & Baccino, T. (2010). Eye fixation-related potentials (EFRPs) during object identification. Visual Neuroscience, 27, 187-192.

Reinhart, R. M. G., Heitz, R. P., Purcell, B. A., Weigand, P. K., Schall, J. D., & Woodman, G. F. (2012). Homologous mechanisms of visuospatial working memory maintenance in macaque and human: Properties and sources. The Journal of Neuroscience, 32, 7711-7722.

Satel, J., Hilchey, M. D., Wang, Z., Story, R., & Klein, R. M. (2013). The effects of ignored versus foveated cues upon inhibition of return: An event-related potential study. Attention, Perception, & Psychophysics, 75, 29-40.

Satel, J., Hilchey, M. D., Wang, Z., Reiss, C. S., & Klein, R. M. (2014). In search of a reliable electrophysiological marker of oculomotor inhibition of return. Psychophysiology, 51, 1037-1045.

Sato, N., & Yamaguchi, Y. (2007). Theta synchronization networks emerge during human object-place memory encoding. Neuroreport, 18, 419-424.

Sato, N., & Yamaguchi, Y. (2009). A computational predictor of human episodic memory based on a theta phase precession network. PLoS ONE 4(10): e7536. doi:10.1371/journal.pone.0007536.

Sander, V., Soper, B., & Everling, S. (2010). Nonhuman primate event-related potentials associated with pro- and anti-saccades. NeuroImage, 49, 1650-1658.

Savage, S. W., Potter, D. D., & Tatler, B. W. (2013). Does preoccupation impair hazard perception? A simultaneous EEG and Eye Tracking study, Transportation Research Part F: Traffic Psychology and Behaviour,17, 52-62.

Simola, J., Le Fevre, K., Torniainen, J., & Baccino, T. (2015). Affective processing in natural scene viewing: Valence and arousal interactions in eye-fixation-related potentials, NeuroImage, 106, 21-33.

Steiner, G. Z., & Barry, R. J. (2011). Pupillary responses and event-related potentials as indices of the orienting reflex. Psychophysiology, 48, 1648-1655.

Talsma, D., White, B.J., Mathôt, S., Munoz, D. P., & Theeuwes, J. (2013). A retinotopic attentional trace after saccadic eye movements: evidence from event-related potentials. Journal of Cognitive Neuroscience, 25, 1563-1577.

Vaden, R. J., Hutcheson, N. L., McCollum, L. A., Kentros, J., & Visscher, K. M. (2012). Older adults, unlike younger adults, do not modulate alpha power to suppress irrelevant information. Neuroimage, 63, 1127-1133.

Verleger, R., Sprenger, A., Gebauer, S., Fritzmannova, M., Friedrich, M., Kraft, S., & Jaskowski, P. (2009). On why left events are the right ones: Neural mechanisms underlying the left-hemifield advantage in rapid serial visual presentation. Journal of Cognitive Neuroscience, 21, 474-488.

Weiler, J., Hassall, C. D., Krigolson, O. E., & Heath, M. (2015). The unidirectional prosaccade switch-cost: Electroencephalographic evidence of task-set inertia in oculomotor control. Behavioural Brain Research, 278, 323-329.

Wilson, G. F., Caldwell, J. A., & Russell, C. A. (2007). Performance and psychophysiological measures of fatigue effects on aviation related tasks of varying difficulty. International Journal of Aviation Psychology, 17, 219-247.

Xu, Y., & Franconeri, S. L. (2012). The Head of the Table: Marking the “Front” of An Object Is Tightly Linked with Selection The Journal of Neuroscience, 25 January 2012, 32(4):1408-1412;

Yoder, K. J., & Belmonte, M. K. (2010). Combining computer game-based behavioural experiments with high-density EEG and infrared gaze tracking. Journal of Visualized Experiment, 46,, doi: 10.3791/2320.

Yuval-Greenberg, S., & Deouell, L. Y. (2011). Scalp-recorded induced gamma-band responses to auditory stimulation and its correlations with saccadic muscle-activity. Brain Topography, 24, 30-39.

Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I., & Deouell, L. Y. (2008). Transient induced Gamma-band response in EEG as a manifestation of miniature saccades. Neuron, 58, 429-441.

Zerouali, Y., Lina, J.-M., & Jemel, B. (2013). Optimal eye-gaze fixation position for face-related neural responses. PLoS ONE 8(6): e60128. doi:10.1371/journal.pone.0060128.



Back To Top

Fekete, T., Beacher, F. D. C. C., Cha, J., Rubin, D., Mujica-Parodi, L. R. (2014). Small-world network properties in prefrontal cortex correlate with predictors of psychopathology risk in young children: A NIRS study. NeuroImage, 85, 345-353.

Kita, Y., Gunji, A., Inoue, Y., Goto, T., Sakihara, K., Kaga, M., Inagaki, M., & Hosokawa, T. (2011). Self-face recognition in children with autism spectrum disorders: A near-infrared spectroscopy study. Brain and Development, 33, 494-503.

Kita. Y., Gunji, A., Sakihara, K., Inagaki, M., Kaga, M., Nakagawa, E., & Hosokawa, T. (2010). Scanning strategies do not modulate face identification: Eye-tracking and near-infrared spectroscopy study. PLoS ONE 5(6): e11050. doi:10.1371/journal.pone.0011050.

Niu, H., Li, H., Sun, L., Su, Y., Huang, J., & Song, Y. (2014). Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study. BioMed Research International, 2014, 631425. doi:10.1155/2014/631425Noguchi, T., & Stewart, N. (2014). In the attraction, compromise, and similarity effects, alternatives are repeatedly compared in pairs on single dimensions, Cognition, 132, 44-56.