EyeLink fMRI/MEG出版物
所有EyeLink功能磁共振成像和MEG研究出版物(同时进行眼睛跟踪)至2023年(一些早于2024年)均按年份列出。您可以使用Visual Cortex、Neural Plasticity、MEG等关键词搜索出版物。您还可以搜索个人作者姓名。如果我们错过了任何EyeLink功能磁共振成像或MEG文章,请给我们发电子邮件!
2021 |
Hamid Karimi-Rouzbahani; Alexandra Woolgar; Anina N. Rich Neural signatures of vigilance decrements predict behavioural errors before they occur Journal Article In: eLife, vol. 10, pp. e60563, 2021. @article{KarimiRouzbahani2021, There are many monitoring environments, such as railway control, in which lapses of attention can have tragic consequences. Problematically, sustained monitoring for rare targets is difficult, with more misses and longer reaction times over time. What changes in the brain underpin these ‘vigilance decrements'? We designed a multiple-object monitoring (MOM) paradigm to examine how the neural representation of information varied with target frequency and time performing the task. Behavioural performance decreased over time for the rare target (monitoring) condition, but not for a frequent target (active) condition. This was mirrored in neural decoding using magnetoencephalography: coding of critical information declined more during monitoring versus active conditions along the experiment. We developed new analyses that can predict behavioural errors from the neural data more than a second before they occurred. This facilitates pre-empting behavioural errors due to lapses in attention and provides new insight into the neural correlates of vigilance decrements. |
Silvia L. Isabella; J. Allan Cheyne; Douglas Cheyne Inhibitory control in the absence of awareness: Interactions between frontal and motor cortex oscillations mediate implicitly learned responses Journal Article In: Frontiers in Human Neuroscience, vol. 15, pp. 786035, 2021. @article{Isabella2021, Cognitive control of action is associated with conscious effort and is hypothesised to be reflected by increased frontal theta activity. However, the functional role of these increases in theta power, and how they contribute to cognitive control remains unknown. We conducted an MEG study to test the hypothesis that frontal theta oscillations interact with sensorimotor signals in order to produce controlled behaviour, and that the strength of these interactions will vary with the amount of control required. We measured neuromagnetic activity in 16 healthy adults performing a response inhibition (Go/Switch) task, known from previous work to modulate cognitive control requirements using hidden patterns of Go and Switch cues. Learning was confirmed by reduced reaction times (RT) to patterned compared to random Switch cues. Concurrent measures of pupil diameter revealed changes in subjective cognitive effort with stimulus probability, even in the absence of measurable behavioural differences, revealing instances of covert variations in cognitive effort. Significant theta oscillations were found in five frontal brain regions, with theta power in the right middle frontal and right premotor cortices parametrically increasing with cognitive effort. Similar increases in oscillatory power were also observed in motor cortical gamma, suggesting an interaction. Right middle frontal and right precentral theta activity predicted changes in pupil diameter across all experimental conditions, demonstrating a close relationship between frontal theta increases and cognitive control. Although no theta-gamma cross-frequency coupling was found, long-range theta phase coherence among the five significant sources between bilateral middle frontal, right inferior frontal, and bilateral premotor areas was found, thus providing a mechanism for the relay of cognitive control between frontal and motor areas via theta signalling. Furthermore, this provides the first evidence for the sensitivity of frontal theta oscillations to implicit motor learning and its effects on cognitive load. More generally these results present a possible a mechanism for this frontal theta network to coordinate response preparation, inhibition and execution. |
2020 |
Elisa Infanti; D. Samuel Schwarzkopf Mapping sequences can bias population receptive field estimates Journal Article In: NeuroImage, vol. 211, pp. 116636, 2020. @article{Infanti2020, Population receptive field (pRF) modelling is a common technique for estimating the stimulus-selectivity of populations of neurons using neuroimaging. Here, we aimed to address if pRF properties estimated with this method depend on the spatio-temporal structure and the predictability of the mapping stimulus. We mapped the polar angle preference and tuning width of voxels in visual cortex (V1–V4) of healthy, adult volunteers. We compared sequences sweeping orderly through the visual field or jumping from location to location employing stimuli of different width (45° vs 6°) and cycles of variable duration (8s vs 60s). While we did not observe any systematic influence of stimulus predictability, the temporal structure of the sequences significantly affected tuning width estimates. Ordered designs with large wedges and short cycles produced systematically smaller estimates than random sequences. Interestingly, when we used small wedges and long cycles, we obtained larger tuning width estimates for ordered than random sequences. We suggest that ordered and random mapping protocols show different susceptibility to other design choices such as stimulus type and duration of the mapping cycle and can produce significantly different pRF results. |
Lauren M. DiNicola; Rodrigo M. Braga; Randy L. Buckner Parallel distributed networks dissociate episodic and social functions within the individual Journal Article In: Journal of Neurophysiology, vol. 123, no. 3, pp. 1144–1179, 2020. @article{DiNicola2020, Association cortex is organized into large-scale distributed networks. One such network, the default network (DN), is linked to diverse forms of internal mentation, opening debate about whether shared or distinct anatomy supports multiple forms of cognition. Using within-individual analysis procedures that preserve idiosyncratic anatomical details, we probed whether multiple tasks from two domains, episodic projection and theory of mind (ToM), rely on the same or distinct networks. In an initial experiment (6 subjects, each scanned 4 times), we found evidence that episodic projection and ToM tasks activate separate regions distributed throughout the cortex, with adjacent regions in parietal, temporal, prefrontal, and midline zones. These distinctions were predicted by the hypothesis that the DN comprises two parallel, interdigitated networks. One network, linked to parahippocampal cortex (PHC), is preferentially recruited during episodic projection, including both remembering and imagining the future. A second juxtaposed network, which includes the temporoparietal junction (TPJ), is differentially engaged during multiple forms of ToM. In two prospectively acquired independent experiments, we replicated and triplicated the dissociation (each with 6 subjects scanned 4 times). Furthermore, the dissociation was found in all zones when analyzed independently, including robustly in midline regions previously described as hubs. The TPJ-linked network is interwoven with the PHC-linked network across the cortex, making clear why it is difficult to fully resolve the two networks in group-averaged or lower-resolution data. These results refine our understanding of the functional-anatomical organization of association cortex and raise fundamental questions about how specialization might arise in parallel, juxtaposed association networks. |
Florin Dolcos; Yuta Katsumi; Chen Shen; Paul C. Bogdan; Suhnyoung Jun; Ryan Larsen; Wendy Heller; Kelly Freeman Bost; Sanda Dolcos The impact of focused attention on emotional experience: A functional MRI investigation Journal Article In: Cognitive, Affective and Behavioral Neuroscience, vol. 20, no. 5, pp. 1011–1026, 2020. @article{Dolcos2020a, Emotional well-being depends on the ability to adaptively cope with various emotional challenges. Most studies have investigated the neural mechanisms of emotion regulation strategies deployed relatively later in the timing of processing that leads to full emotional experiences. However, less is known about strategies that are engaged in earlier stages of emotion processing, such as those involving attentional deployment. We investigated the neural mechanisms associated with self-guided Focused Attention (FA) in mitigating subjective negative emotional experiences. Functional magnetic resonance imaging (fMRI) data were recorded while participants viewed a series of composite negative and neutral images with distinguishable foreground (FG) and background (BG) areas. Participants were instructed to focus either on the FG or BG components of the images, and then rated their emotional experiences. Behavioral results showed that FA was successful in decreasing emotional ratings for negative images viewed in BG Focus condition. At the neural level, the BG Focus was associated with increased activity in regions typically implicated in top-down executive control (dorsolateral prefrontal cortex and lateral parietal cortex) and decreased activity in regions linked to affective processing (amygdala and ventrolateral prefrontal cortex). Dissociable brain activity linked to FA also was identified in visual cortices, including between the parahippocampal and fusiform gyri, showing increased versus decreased activity, respectively, during the BG Focus. These findings complement the evidence from prior FA studies with recollected emotional memories as internal stimuli and further demonstrate the effectiveness of self-guided FA in mitigating negative emotional experiences associated with processing of external unpleasant stimuli. |
Laura Dugué; Elisha Merriam; David Heeger; Marisa Carrasco Differential impact of endogenous and exogenous attention on activity in human visual cortex Journal Article In: Scientific Reports, vol. 10, pp. 21274, 2020. @article{Dugue2020, How do endogenous (voluntary) and exogenous (involuntary) attention modulate activity in visual cortex? Using ROI-based fMRI analysis, we measured fMRI activity for valid and invalid trials (target at cued/un-cued location, respectively), pre- or post-cueing endogenous or exogenous attention, while participants performed the same orientation discrimination task. We found stronger modulation in contralateral than ipsilateral visual regions, and higher activity in valid- than invalid-trials. For endogenous attention, modulation of stimulus-evoked activity due to a pre-cue increased along the visual hierarchy, but was constant due to a post-cue. For exogenous attention, modulation of stimulus-evoked activity due to a pre-cue was constant along the visual hierarchy, but was not modulated due to a post-cue. These findings reveal that endogenous and exogenous attention distinctly modulate activity in visuo-occipital areas during orienting and reorienting; endogenous attention facilitates both the encoding and the readout of visual information whereas exogenous attention only facilitates the encoding of information. |
Benedetta Franceschiello; Lorenzo Di Sopra; Astrid Minier; Silvio Ionta; David Zeugin; Michael P. Notter; Jessica A. M. Bastiaansen; João Jorge; Jérôme Yerly; Matthias Stuber; Micah M. Murray 3-dimensional magnetic resonance imaging of the freely moving human eye Journal Article In: Progress in Neurobiology, vol. 194, pp. 1–8, 2020. @article{Franceschiello2020, Eye motion is a major confound for magnetic resonance imaging (MRI) in neuroscience or ophthalmology. Currently, solutions toward eye stabilisation include participants fixating or administration of paralytics/anaesthetics. We developed a novel MRI protocol for acquiring 3-dimensional images while the eye freely moves. Eye motion serves as the basis for image reconstruction, rather than an impediment. We fully reconstruct videos of the moving eye and head. We quantitatively validate data quality with millimetre resolution in two ways for individual participants. First, eye position based on reconstructed images correlated with simultaneous eye-tracking. Second, the reconstructed images preserve anatomical properties; the eye's axial length measured from MRI images matched that obtained with ocular biometry. The technique operates on a standard clinical setup, without necessitating specialized hardware, facilitating wide deployment. In clinical practice, we anticipate that this may help reduce burdens on both patients and infrastructure, by integrating multiple varieties of assessments into a single comprehensive session. More generally, our protocol is a harbinger for removing the necessity of fixation, thereby opening new opportunities for ethologically-valid, naturalistic paradigms, the inclusion of populations typically unable to stably fixate, and increased translational research such as in awake animals whose eye movements constitute an accessible behavioural readout. |
Matthias Fritsche; Samuel J. D. Lawrence; Floris P. Lange Temporal tuning of repetition suppression across the visual cortex Journal Article In: Journal of Neurophysiology, vol. 123, no. 1, pp. 224–233, 2020. @article{Fritsche2020, The visual system adapts to its recent history. A phenomenon related to this is repetition suppression (RS), a reduction in neural responses to repeated compared with nonrepeated visual input. An intriguing hypothesis is that the timescale over which RS occurs across the visual hierarchy is tuned to the temporal statistics of visual input features, which change rapidly in low-level areas but are more stable in higher level areas. Here, we tested this hypothesis by studying the influence of the temporal lag between successive visual stimuli on RS throughout the visual system using functional (f)MRI. Twelve human volunteers engaged in four fMRI sessions in which we characterized the blood oxygen level-dependent response to pairs of repeated and nonrepeated natural images with interstimulus intervals (ISI) ranging from 50 to 1,000 ms to quantify the temporal tuning of RS along the posterior-anterior axis of the visual system. As expected, RS was maximal for short ISIs and decayed with increasing ISI. Crucially, however, and against our hypothesis, RS decayed at a similar rate in early and late visual areas. This finding challenges the prevailing view that the timescale of RS increases along the posterior-anterior axis of the visual system and suggests that RS is not tuned to temporal input regularities. |
Mengyuan Gong; Taosheng Liu Continuous and discrete representations of feature-based attentional priority in human frontoparietal network Journal Article In: Cognitive Neuroscience, vol. 11, no. 1-2, pp. 47–59, 2020. @article{Gong2020, Previous studies suggest that human frontoparietal network represents feature-based attentional priority, yet the precise nature of the priority signals remains unclear. Here, we examined whether priority signals vary continuously or discretely as a function of feature similarity. In an fMRI experiment, we presented two superimposed dot fields moving along two linear directions (leftward and rightward) while varying the angular separation between the two directions. Subjects were cued to attend to one of the two dot fields and respond to a possible speed-up in the cued direction. We used multivariate analysis to evaluate how priority representation of the attended direction changes with feature similarity. We found that in early visual areas as well as posterior intraparietal sulcus and inferior frontal junction, the patterns of neural activity became more different as the feature similarity decreased, indicating a continuous representation of the attended feature. In contrast, patterns of neural activity in anterior intraparietal sulcus and frontal eye field remained invariant to changes in feature similarity, indicating a discrete representation of the attended feature. Such distinct neural coding of attentional priority across the frontoparietal network may make complementary contributions to enable flexible attentional control. |
Andrea Grant; Gregory J. Metzger; Pierre François Van de Moortele; Gregor Adriany; Cheryl Olman; Lin Zhang; Joseph Koopermeiners; Yiğitcan Eryaman; Margaret Koeritzer; Meredith E. Adams; Thomas R. Henry; Kamil Uğurbil 10.5 T MRI static field effects on human cognitive, vestibular, and physiological function Journal Article In: Magnetic Resonance Imaging, vol. 73, pp. 163–176, 2020. @article{Grant2020, Purpose: To perform a pilot study to quantitatively assess cognitive, vestibular, and physiological function during and after exposure to a magnetic resonance imaging (MRI) system with a static field strength of 10.5 Tesla at multiple time scales. Methods: A total of 29 subjects were exposed to a 10.5 T MRI field and underwent vestibular, cognitive, and physiological testing before, during, and after exposure; for 26 subjects, testing and exposure were repeated within 2–4 weeks of the first visit. Subjects also reported sensory perceptions after each exposure. Comparisons were made between short and long term time points in the study with respect to the parameters measured in the study; short term comparison included pre-vs-isocenter and pre-vs-post (1–24 h), while long term compared pre-exposures 2–4 weeks apart. Results: Of the 79 comparisons, 73 parameters were unchanged or had small improvements after magnet exposure. The exceptions to this included lower scores on short term (i.e. same day) executive function testing, greater isocenter spontaneous eye movement during visit 1 (relative to pre-exposure), increased number of abnormalities on videonystagmography visit 2 versus visit 1 and a mix of small increases (short term visit 2) and decreases (short term visit 1) in blood pressure. In addition, more subjects reported metallic taste at 10.5 T in comparison to similar data obtained in previous studies at 7 T and 9.4 T. Conclusion: Initial results of 10.5 T static field exposure indicate that 1) cognitive performance is not compromised at isocenter, 2) subjects experience increased eye movement at isocenter, and 3) subjects experience small changes in vital signs but no field-induced increase in blood pressure. While small but significant differences were found in some comparisons, none were identified as compromising subject safety. A modified testing protocol informed by these results was devised with the goal of permitting increased enrollment while providing continued monitoring to evaluate field effects. |
Joseph C. Griffis; Nicholas V. Metcalf; Maurizio Corbetta; Gordon L. Shulman In: NeuroImage, vol. 210, pp. 116589, 2020. @article{Griffis2020, Focal brain lesions disrupt resting-state functional connectivity, but the underlying structural mechanisms are unclear. Here, we examined the direct and indirect effects of structural disconnections on resting-state functional connectivity in a large sample of sub-acute stroke patients with heterogeneous brain lesions. We estimated the impact of each patient's lesion on the structural connectome by embedding the lesion in a diffusion MRI streamline tractography atlas constructed using data from healthy individuals. We defined direct disconnections as the loss of direct structural connections between two regions, and indirect disconnections as increases in the shortest structural path length between two regions that lack direct structural connections. We then tested the hypothesis that functional connectivity disruptions would be more severe for disconnected regions than for regions with spared connections. On average, nearly 20% of all region pairs were estimated to be either directly or indirectly disconnected by the lesions in our sample, and extensive disconnections were associated primarily with damage to deep white matter locations. Importantly, both directly and indirectly disconnected region pairs showed more severe functional connectivity disruptions than region pairs with spared direct and indirect connections, respectively, although functional connectivity disruptions tended to be most severe between region pairs that sustained direct structural disconnections. Together, these results emphasize the widespread impacts of focal brain lesions on the structural connectome and show that these impacts are reflected by disruptions of the functional connectome. Further, they indicate that in addition to direct structural disconnections, lesion-induced increases in the structural shortest path lengths between indirectly structurally connected region pairs provide information about the remote functional disruptions caused by focal brain lesions. |
Marcus Grueschow; Birgit Kleim; Christian C. Ruff Role of the locus coeruleus arousal system in cognitive control Journal Article In: Journal of Neuroendocrinology, vol. 32, pp. 1–11, 2020. @article{Grueschow2020, Cognitive control lies at the core of human adaptive behaviour. Humans vary substantially in their ability to execute cognitive control with respect to optimally facing environmental challenges, although the neural origins of this heterogeneity are currently not well understood. Recent theoretical frameworks implicate the locus coeruleus noradrenergic arousal system (LC-NE) in that process. Invasive neurophysiological work in rodents has shown that the LC-NE is an important homeostatic control centre of the body. LC-NE innervates the entire neocortex and has particularly strong connections with the cingulate gyrus. In the present study, using a response conflict task, functional magnetic resonance imaging and concurrent pupil dilation measures (a proxy for LC-NE firing), we provide empirical evidence for a decisive role of the LC-NE in cognitive control in humans. We show that the level of individual behavioural adjustment in cognitive control relates to the level of functional coupling between LC-NE and the dorsomedial prefrontal cortex, as well as dorsolateral prefrontal cortex. Moreover, we show that the pupil is substantially more dilated during conflict trials requiring behavioural adjustment than during no conflict trials. In addition, we explore a potential relationship between pupil dilation and neural activity during choice conflict adjustments. Our data provide novel insight into arousal-related influences on cognitive control and suggest pupil dilation as a potential external marker for endogenous neural processes involved in optimising behavioural control. Our results may also be clinically relevant for a variety of pathologies where cognitive control is compromised, such as anxiety, depression, addiction and post-traumatic stress disorder. |
Arvid Guterstam; Branden J. Bio; Andrew I. Wilterson; Michael S. A. Graziano Temporo-parietal cortex involved in modeling one's own and others' attention Journal Article In: eLife, vol. 10, pp. e63551, 2020. @article{Guterstam2020b, In a traditional view, in social cognition, attention is equated with gaze and people track attention by tracking other people's gaze. Here we used fMRI to test whether the brain represents attention in a richer manner. People read stories describing an agent (either oneself or someone else) directing attention to an object in one of two ways: either internally directed (endogenous) or externally induced (exogenous). We used multivoxel pattern analysis to examine how brain areas within the theory-of-mind network encoded attention type and agent type. Brain activity patterns in the left temporo-parietal junction (TPJ) showed significant decoding of information about endogenous versus exogenous attention. The left TPJ, left superior temporal sulcus (STS), precuneus, and medial prefrontal cortex (MPFC) significantly decoded agent type (self versus other). These findings show that the brain constructs a rich model of one's own and others' attentional state, possibly aiding theory of mind. |
Arvid Guterstam; Andrew I. Wilterson; Davis Wachtell; Michael S. A. Graziano Other people's gaze encoded as implied motion in the human brain Journal Article In: Proceedings of the National Academy of Sciences, vol. 117, no. 23, pp. 13162–13167, 2020. @article{Guterstam2020a, Keeping track of other people's gaze is an essential task in social cognition and key for successfully reading other people's intentions and beliefs (theory of mind). Recent behavioral evidence suggests that we construct an implicit model of other people's gaze, which may incorporate physically incoherent attributes such as a construct of force-carrying beams that emanate from the eyes. Here, we used functional magnetic resonance imaging and multivoxel pattern analysis to test the prediction that the brain encodes gaze as implied motion streaming from an agent toward a gazed-upon object. We found that a classifier, trained to discriminate the direction of visual motion, significantly decoded the gaze direction in static images depicting a sighted face, but not a blindfolded one, from brain activity patterns in the human motion-sensitive middle temporal complex (MT+) and temporo-parietal junction (TPJ). Our results demonstrate a link between the visual motion system and social brain mechanisms, in which the TPJ, a key node in theory of mind, works in concert with MT+ to encode gaze as implied motion. This model may be a fundamental aspect of social cognition that allows us to efficiently connect agents with the objects of their attention. It is as if the brain draws a quick visual sketch with moving arrows to help keep track of who is attending to what. This implicit, fluid-flow model of other people's gaze may help explain culturally universal myths about the mind as an energy-like, flowing essence. |
Kristen R. Hamilton; Jason F. Smith; Stefanie F. Gonçalves; Jazlyn A. Nketia; Olivia N. Tasheuras; Mark Yoon; Katya Rubia; Theresa J. Chirles; Carl W. Lejuez; Alexander J. Shackman Striatal bases of temporal discounting in early adolescents Journal Article In: Neuropsychologia, vol. 144, pp. 107492, 2020. @article{Hamilton2020, Steeper rates of temporal discounting—the degree to which smaller-sooner (SS) rewards are preferred over larger-later (LL) ones—have been associated with impulsive and ill-advised behaviors in adolescence. Yet, the underlying neural systems remain poorly understood. Here we used a well-established temporal discounting paradigm and functional MRI (fMRI) to examine engagement of the striatum—including the caudate, putamen, and ventral striatum (VS)—in early adolescence (13–15 years; N = 27). Analyses provided evidence of enhanced activity in the caudate and VS during impulsive choice. Exploratory analyses revealed that trait impulsivity was associated with heightened putamen activity during impulsive choices. A more nuanced pattern was evident in the cortex, with the dorsolateral prefrontal cortex mirroring the putamen and posterior parietal cortex showing the reverse association. Taken together, these observations provide an important first glimpse at the distributed neural systems underlying economic choice and trait-like individual differences in impulsivity in the early years of adolescence, setting the stage for prospective-longitudinal and intervention research. |
Christoph Helmchen; Björn Machner; Matthias Rother; Peer Spliethoff; Martin Göttlich; Andreas Sprenger Effects of galvanic vestibular stimulation on resting state brain activity in patients with bilateral vestibulopathy Journal Article In: Human Brain Mapping, vol. 41, no. 9, pp. 2527–2547, 2020. @article{Helmchen2020, We examined the effect of galvanic vestibular stimulation (GVS) on resting state brain activity using fMRI (rs-fMRI) in patients with bilateral vestibulopathy. Based on our previous findings, we hypothesized that GVS, which excites the vestibular nerve fibers, (a) increases functional connectivity in temporoparietal regions processing vestibular signals, and (b) alleviates abnormal visual–vestibular interaction. Rs-fMRI of 26 patients and 26 age-matched healthy control subjects was compared before and after GVS. The stimulation elicited a motion percept in all participants. Using different analyses (degree centrality, DC; fractional amplitude of low frequency fluctuations [fALFF] and seed-based functional connectivity, FC), group comparisons revealed smaller rs-fMRI in the right Rolandic operculum of patients. After GVS, rs-fMRI increased in the right Rolandic operculum in both groups and in the patients' cerebellar Crus 1 which was related to vestibular hypofunction. GVS elicited a fALFF increase in the visual cortex of patients that was inversely correlated with the patients' rating of perceived dizziness. After GVS, FC between parietoinsular cortex and higher visual areas increased in healthy controls but not in patients. In conclusion, short-term GVS is able to modulate rs-fMRI in healthy controls and BV patients. GVS elicits an increase of the reduced rs-fMRI in the patients' right Rolandic operculum, which may be an important contribution to restore the disturbed visual–vestibular interaction. The GVS-induced changes in the cerebellum and the visual cortex were associated with lower dizziness-related handicaps in patients, possibly reflecting beneficial neural plasticity that might subserve visual–vestibular compensation of deficient self-motion perception. |
Lara Henco; Marie Luise Brandi; Juha M. Lahnakoski; Andreea O. Diaconescu; Christoph Mathys; Leonhard Schilbach Bayesian modelling captures inter-individual differences in social belief computations in the putamen and insula Journal Article In: Cortex, vol. 131, pp. 221–236, 2020. @article{Henco2020, Computational models of social learning and decision-making provide mechanistic tools to investigate the neural mechanisms that are involved in understanding other people. While most studies employ explicit instructions to learn from social cues, everyday life is characterized by the spontaneous use of such signals (e.g., the gaze of others) to infer on internal states such as intentions. To investigate the neural mechanisms of the impact of gaze cues on learning and decision-making, we acquired behavioural and fMRI data from 50 participants performing a probabilistic task, in which cards with varying winning probabilities had to be chosen. In addition, the task included a computer-generated face that gazed towards one of these cards providing implicit advice. Participants' individual belief trajectories were inferred using a hierarchical Gaussian filter (HGF) and used as predictors in a linear model of neuronal activation. During learning, social prediction errors were correlated with activity in inferior frontal gyrus and insula. During decision-making, the belief about the accuracy of the social cue was correlated with activity in inferior temporal gyrus, putamen and pallidum while the putamen and insula showed activity as a function of individual differences in weighting the social cue during decision-making. Our findings demonstrate that model-based fMRI can give insight into the behavioural and neural aspects of spontaneous social cue integration in learning and decision-making. They provide evidence for a mechanistic involvement of specific components of the basal ganglia in subserving these processes. |
John M. Henderson; Jessica E. Goold; Wonil Choi; Taylor R. Hayes Neural correlates of fixated low-and high-level scene properties during active scene viewing Journal Article In: Journal of Cognitive Neuroscience, vol. 32, no. 10, pp. 2013–2023, 2020. @article{Henderson2020, During real-world scene perception, viewers actively direct their attention through a scene in a controlled sequence of eye fixations. During each fixation, local scene properties are attended, analyzed, and interpreted. What is the relationship between fixated scene properties and neural activity in the visual cortex? Participants inspected photographs of real-world scenes in an MRI scanner while their eye movements were recorded. Fixation-related fMRI was used tomeasure activation as a function of lower- and higher-level scene properties at fixation, operationalized as edge density and meaning maps, respectively. We found that edge density at fixation was most associated with activation in early visual areas, whereas semantic content at fixation was most associated with activation along the ventral visual streamincluding core object and scene-selective areas (lateral occipital complex, parahippocampal place area, occipital place area, and retrosplenial cortex). The observed activation from semantic content was not accounted for by differences in edge density. The results are consistent with active vision models in which fixation gates detailed visual analysis for fixated scene regions, and this gating influences both lower and higher levels of scene analysis. |
Yaseen A. Jamal; Daniel D. Dilks Rapid topographic reorganization in adult human primary visual cortex (V1) during noninvasive and reversible deprivation Journal Article In: Proceedings of the National Academy of Sciences, vol. 117, no. 20, pp. 11059–11067, 2020. @article{Jamal2020, Can the primary visual cortex (V1), once wired up in development, change in adulthood? Although numerous studies have demonstrated topographic reorganization in adult V1 following the loss of bottom-up input, others have challenged such findings, offering alternative explanations. Here we use a noninvasive and reversible deprivation paradigm and converging neural and behavioral approaches to address these alternatives in the experimental test case of short-term topographic reorganization in adult human V1. Specifically, we patched one eye in typical adults, thereby depriving the cortical representation of the other eye's blind spot (BS), and immediately tested for topographic reorganization using functional magnetic resonance imaging and psychophysics. Strikingly, within just minutes of eye-patching, the BS representation in V1 began responding to stimuli presented outside of the BS, and these same stimuli were perceived as elongated toward the BS. Thus, we provide converging neural and behavioral evidence of rapid topographic reorganization in adult human V1, and the strongest evidence yet that visual deprivation produces bona fide cortical change. |
Andy Jeesu Kim; Brian A. Anderson Neural correlates of attentional capture by stimuli previously associated with social reward Journal Article In: Cognitive Neuroscience, vol. 11, no. 1-2, pp. 5–15, 2020. @article{Kim2020a, Our attention is strongly influenced by reward learning. Stimuli previously associated with monetary reward have been shown to automatically capture attention in both behavioral and neurophysiological studies. Stimuli previously associated with positive social feedback similarly capture attention; however, it is unknown whether such social facilitation of attention relies on similar or dissociable neural systems. Here, we used the value-driven attentional capture paradigm in an fMRI study to identify the neural correlates of attention to stimuli previously associated with social reward. The results reveal learning-dependent priority signals in the contralateral visual cortex, posterior parietal cortex, and caudate tail, similar to studies using monetary reward. An additional priority signal was consistently evident in the right middle frontal gyrus (MFG). Our findings support the notion of a common neural mechanism for directing attention on the basis of selection history that generalizes across different types of reward. |
Andy Jeesu Kim; Brian A. Anderson Arousal-biased competition explains reduced distraction by reward cues under threat Journal Article In: eNeuro, vol. 7, no. 4, pp. 1–12, 2020. @article{Kim2020, Anxiety is an adaptive neural state that promotes rapid responses under heightened vigilance when survival is threatened. Anxiety has consistently been found to potentiate the attentional processing of physically salient stimuli. However, a recent study demonstrated that a threat manipulation reduces attentional capture by reward-associated stimuli, suggesting a more complex relationship between anxiety and the control of attention. The mechanisms by which threat can reduce the distracting quality of stimuli are unknown. In this study, using functional magnetic resonance imaging (fMRI) on human subjects, we examined the neural correlates of attention to previously reward-associated stimuli with and without the threat of unpredictable electric shock. We replicate enhanced distractor-evoked activity throughout the value-driven attention network (VDAN) in addition to enhanced stimulus-evoked activity generally under threat. Importantly, these two factors interacted such that the representation of previously reward-associated distractors was particularly pronounced under threat. Our results from neuroimaging fit well with the principle of arousal-biased competition (ABC), although such effects are typically associated with behavioral measures of increased attention to stimuli that already possess elevated attentional priority. The findings of our study suggest that ABC can be leveraged to support more efficient ignoring of reward cues, revealing new insights into the functional significance of ABC as a mechanism of attentional control, and provide a mechanistic explanation of how threat reduces attention to irrelevant reward information. |
L. Tankelevitch; E. Spaak; M. F. S. Rushworth; M. G. Stokes In: Journal of Neuroscience, vol. 40, no. 26, pp. 5033–5050, 2020. @article{Tankelevitch2020, Studies of selective attention typically consider the role of task goals or physical salience, but recent work has shown that attention can also be captured by previously reward-associated stimuli, even when these are no longer relevant (i.e., value-driven attentional capture; VDAC). We used magnetoencephalography (MEG) to investigate how previously reward-associated stimuli are processed, the time-course of reward history effects, and how this relates to the behavioural effects of VDAC. Male and female human participants first completed a reward learning task to establish stimulus-reward associations. Next, we measured attentional capture in a separate task by presenting these stimuli in the absence of reward contingency, and probing their effects on the processing of separate target stimuli presented at different time lags. Using time-resolved multivariate pattern analysis, we found that learned value modulated the spatial selection of previously rewarded stimuli in occipital, inferior temporal, and parietal cortex from ~260ms after stimulus onset. This value modulation was related to the strength of participants' behavioural VDAC effect and persisted into subsequent target processing. Furthermore, we found a spatially invariant value signal from ~340ms. Importantly, learned value did not influence the neural discriminability of the previously rewarded stimuli in visual cortical areas. Our results suggest that VDAC is underpinned by learned value signals which modulate spatial selection throughout posterior visual and parietal cortex. We further suggest that VDAC can occur in the absence of changes in early visual cortical processing. Significance statement Attention is our ability to focus on relevant information at the expense of irrelevant information. It can be affected by previously learned but currently irrelevant stimulus-reward associations, a phenomenon termed “value-driven attentional capture” (VDAC). The neural mechanisms underlying VDAC remain unclear. It has been speculated that reward learning induces visual cortical plasticity which modulates early visual processing to capture attention. Although we find that learned value modulates spatial attention in sensory brain areas, an effect which correlates with VDAC, we find no relevant signatures of visual cortical plasticity. |
Leyla Isik; Anna Mynick; Dimitrios Pantazis; Nancy Kanwisher The speed of human social interaction perception Journal Article In: NeuroImage, vol. 215, pp. 116844, 2020. @article{Isik2020, The ability to perceive others' social interactions, here defined as the directed contingent actions between two or more people, is a fundamental part of human experience that develops early in infancy and is shared with other primates. However, the neural computations underlying this ability remain largely unknown. Is social interaction recognition a rapid feedforward process or a slower post-perceptual inference? Here we used magnetoencephalography (MEG) decoding to address this question. Subjects in the MEG viewed snapshots of visually matched real-world scenes containing a pair of people who were either engaged in a social interaction or acting independently. The presence versus absence of a social interaction could be read out from subjects' MEG data spontaneously, even while subjects performed an orthogonal task. This readout generalized across different people and scenes, revealing abstract representations of social interactions in the human brain. These representations, however, did not come online until quite late, at 300 ms after image onset, well after feedforward visual processes. In a second experiment, we found that social interaction readout still occurred at this same late latency even when subjects performed an explicit task detecting social interactions. We further showed that MEG responses distinguished between different types of social interactions (mutual gaze vs joint attention) even later, around 500 ms after image onset. Taken together, these results suggest that the human brain spontaneously extracts information about others' social interactions, but does so slowly, likely relying on iterative top-down computations. |
Davide Tabarelli; Christian Keitel; Joachim Gross; Daniel Baldauf Spatial attention enhances cortical tracking of quasi-rhythmic visual stimuli Journal Article In: NeuroImage, vol. 208, pp. 116444, 2020. @article{Tabarelli2020, Successfully interpreting and navigating our natural visual environment requires us to track its dynamics constantly. Additionally, we focus our attention on behaviorally relevant stimuli to enhance their neural processing. Little is known, however, about how sustained attention affects the ongoing tracking of stimuli with rich natural temporal dynamics. Here, we used MRI-informed source reconstructions of magnetoencephalography (MEG) data to map to what extent various cortical areas track concurrent continuous quasi-rhythmic visual stimulation. Further, we tested how top-down visuo-spatial attention influences this tracking process. Our bilaterally presented quasi-rhythmic stimuli covered a dynamic range of 4–20 Hz, subdivided into three distinct bands. As an experimental control, we also included strictly rhythmic stimulation (10 vs 12 Hz). Using a spectral measure of brain-stimulus coupling, we were able to track the neural processing of left vs. right stimuli independently, even while fluctuating within the same frequency range. The fidelity of neural tracking depended on the stimulation frequencies, decreasing for higher frequency bands. Both attended and non-attended stimuli were tracked beyond early visual cortices, in ventral and dorsal streams depending on the stimulus frequency. In general, tracking improved with the deployment of visuo-spatial attention to the stimulus location. Our results provide new insights into how human visual cortices process concurrent dynamic stimuli and provide a potential mechanism – namely increasing the temporal precision of tracking – for boosting the neural representation of attended input. |
Niklas Wilming; Peter R. Murphy; Florent Meyniel; Tobias H. Donner Large-scale dynamics of perceptual decision information across human cortex Journal Article In: Nature Communications, vol. 11, pp. 5109, 2020. @article{Wilming2020, Perceptual decisions entail the accumulation of sensory evidence for a particular choice towards an action plan. An influential framework holds that sensory cortical areas encode the instantaneous sensory evidence and downstream, action-related regions accumulate this evidence. The large-scale distribution of this computation across the cerebral cortex has remained largely elusive. Here, we develop a regionally-specific magnetoencephalography decoding approach to exhaustively map the dynamics of stimulus- and choice-specific signals across the human cortical surface during a visual decision. Comparison with the evidence accumulation dynamics inferred from behavior disentangles stimulus-dependent and endogenous components of choice-predictive activity across the visual cortical hierarchy. We find such an endogenous component in early visual cortex (including V1), which is expressed in a low (<20 Hz) frequency band and tracks, with delay, the build-up of choice-predictive activity in (pre-) motor regions. Our results are consistent with choice- and frequency-specific cortical feedback signaling during decision formation. |
Eelke Spaak; Floris P. Lange Hippocampal and prefrontal theta-band mechanisms underpin implicit spatial context learning Journal Article In: Journal of Neuroscience, vol. 40, no. 1, pp. 191–202, 2020. @article{Spaak2020, Humans can rapidly and seemingly implicitly learn to predict typical locations of relevant items when those items are encountered in familiar spatial contexts. Two important questions remain, however, concerning this type of learning: (1) which neural structures and mechanisms are involved in acquiring and exploiting such contextual knowledge? (2) Is this type of learning truly implicit and unconscious? We now answer both these questions after closely examining behavior and recording neural activity using MEG while observers (male and female) were acquiring and exploiting statistical regularities. Computational modeling of behavioral data suggested that, after repeated exposures to a spatial context, participants' behavior was marked by an abrupt switch to an exploitation strategy of the learnt regularities. MEG recordings showed that hippocampus and prefrontal cortex (PFC) were involved in the task and furthermore revealed a striking dissociation: only the initial learning phase was associated with hippocampal theta band activity, while the subsequent exploitation phase showed a shift in theta band activity to the PFC. Intriguingly, the behavioral benefit of repeated exposures to certain scenes was inversely related to explicit awareness of such repeats, demonstrating the implicit nature of the expectations acquired. Together, these findings demonstrate that (1a) hippocampus and PFC play complementary roles in the implicit, unconscious learning and exploitation of spatial statistical regularities; (1b) these mechanisms are implemented in the theta frequency band; and (2) contextual knowledge can indeed be acquired unconsciously, and awareness of such knowledge can even interfere with the exploitation thereof. |
Jakub Limanowski; Vladimir Litvak; Karl Friston Cortical beta oscillations reflect the contextual gating of visual action feedback Journal Article In: NeuroImage, vol. 222, pp. 117267, 2020. @article{Limanowski2020, In sensorimotor integration, the brain needs to decide how its predictions should accommodate novel evidence by ‘gating' sensory data depending on the current context. Here, we examined the oscillatory correlates of this process by recording magnetoencephalography (MEG) data during a new task requiring action under intersensory conflict. We used virtual reality to decouple visual (virtual) and proprioceptive (real) hand postures during a task in which the phase of grasping movements tracked a target (in either modality). Thus, we rendered visual information either task-relevant or a (to-be-ignored) distractor. Under visuo-proprioceptive incongruence, occipital beta power decreased (relative to congruence) when vision was task-relevant but increased when it had to be ignored. Dynamic causal modeling (DCM) revealed that this interaction was best explained by diametrical, task-dependent changes in visual gain. These results suggest a crucial role for beta oscillations in the contextual gating (i.e., gain or precision control) of visual vs proprioceptive action feedback, depending on current behavioral demands. |
G. Elliott Wimmer; Yunzhe Liu; Neža Vehar; Timothy E. J. Behrens; Raymond J. Dolan Episodic memory retrieval success is associated with rapid replay of episode content Journal Article In: Nature Neuroscience, vol. 23, no. 8, pp. 1025–1033, 2020. @article{Wimmer2020, Retrieval of everyday experiences is fundamental for informing our future decisions. The fine-grained neurophysiological mechanisms that support such memory retrieval are largely unknown. We studied participants who first experienced, without repetition, unique multicomponent 40–80-s episodes. One day later, they engaged in cued retrieval of these episodes while undergoing magnetoencephalography. By decoding individual episode elements, we found that trial-by-trial successful retrieval was supported by the sequential replay of episode elements, with a temporal compression factor of >60. The direction of replay supporting retrieval, either backward or forward, depended on whether the task goal was to retrieve elements of an episode that followed or preceded, respectively, a retrieval cue. This sequential replay was weaker in very-high-performing participants, in whom instead we found evidence for simultaneous clustered reactivation. Our results demonstrate that memory-mediated decisions are supported by a rapid replay mechanism that can flexibly shift in direction in response to task goals. |
Tobias Talanow; Anna-Maria Kasparbauer; Julia V. Lippold; Bernd Weber; Ulrich Ettinger Neural correlates of proactive and reactive inhibition of saccadic eye movements Journal Article In: Brain Imaging and Behavior, vol. 14, no. 1, pp. 72–88, 2020. @article{Talanow2020, Although research on goal-directed, proactive inhibitory control (IC) and stimulus-driven, reactive IC is growing, no previous study has compared proactive IC in conditions of uncertainty with regard to upcoming inhibition to conditions of certain upcoming IC. Therefore, we investigated effects of certainty and uncertainty on behavior and blood oxygen level dependent (BOLD) signal in proactive and reactive IC. In two studies, healthy adults performed saccadic go/no-go and prosaccade/antisaccade tasks. The certainty manipulation had a highly significant behavioral effect in both studies, with inhibitory control being more successful under certain than uncertain conditions on both tasks (p ≤ 0.001). Saccadic go responses were significantly less efficient under conditions of uncertainty than certain responding (p < 0.001). Event-related functional magnetic resonance imaging (fMRI) (one study) revealed a dissociation of certainty- and uncertainty-related proactive inhibitory neural correlates in the go/no-go task, with lateral and medial prefrontal and occipital cortex showing stronger deactivations during uncertainty than during certain upcoming inhibition, and lateral parietal cortex being activated more strongly during certain upcoming inhibition than uncertainty or certain upcoming responding. In the antisaccade task, proactive BOLD effects arose due to stronger deactivations in uncertain response conditions of both tasks and before certain prosaccades than antisaccades. Reactive inhibition-related BOLD increases occurred in inferior parietal cortex and supramarginal gyrus (SMG) in the go/no-go task only. Proactive IC may imply focusing attention on the external environment for encoding salient or alerting events as well as inhibitory mechanisms that reduce potentially distracting neural processes. SMG and inferior parietal cortex may play an important role in both proactive and reactive IC of saccades. |
Clément Tarrano; Nicolas Wattiez; Cécile Delorme; Eavan M. McGovern; Vanessa Brochard; Stéphane Thobois; Christine Tranchant; David Grabli; Bertrand Degos; Jean Christophe Corvol; Jean Michel Pedespan; Pierre Krystkoviak; Jean Luc Houeto; Adrian Degardin; Luc Defebvre; Romain Valabrègue; Marie Vidailhet; Pierre Pouget; Emmanuel Roze; Yulia Worbe Visual sensory processing is altered in myoclonus dystonia Journal Article In: Movement Disorders, vol. 35, no. 1, pp. 151–160, 2020. @article{Tarrano2020, Background: Abnormal sensory processing, including temporal discrimination threshold, has been described in various dystonic syndromes. Objective: To investigate visual sensory processing in DYT-SGCE and identify its structural correlates. Methods: DYT-SGCE patients without DBS (DYT-SGCE-non-DBS) and with DBS (DYT-SGCE-DBS) were compared to healthy volunteers in three tasks: a temporal discrimination threshold, a movement orientation discrimination, and movement speed discrimination. Response times attributed to accumulation of sensory visual information were computationally modelized, with μ parameter indicating sensory mean growth rate. We also identified the structural correlates of behavioral performance for temporal discrimination threshold. Results: Twenty-four DYT-SGCE-non-DBS, 13 DYT-SGCE-DBS, and 25 healthy volunteers were included in the study. In DYT-SGCE-DBS, the discrimination threshold was higher in the temporal discrimination threshold (P = 0.024), with no difference among the groups in other tasks. The sensory mean growth rate (μ) was lower in DYT-SGCE in all three tasks (P < 0.01), reflecting a slower rate of sensory accumulation for the visual information in these patients independent of DBS. Structural imaging analysis showed a thicker left primary visual cortex (P = 0.001) in DYT-SGCE-non-DBS compared to healthy volunteers, which also correlated with lower μ in temporal discrimination threshold (P = 0.029). In DYT-SGCE-non-DBS, myoclonus severity also correlated with a lower μ in the temporal discrimination threshold task (P = 0.048) and with thicker V1 on the left (P = 0.022). Conclusion: In DYT-SGCE, we showed an alteration of the visual sensory processing in the temporal discrimination threshold that correlated with myoclonus severity and structural changes in the primary visual cortex. |
Raphael Vallat; Alain Nicolas; Perrine Ruby Brain functional connectivity upon awakening from sleep predicts interindividual differences in dream recall frequency Journal Article In: Sleep, vol. 43, no. 2, pp. 1–11, 2020. @article{Vallat2020, Why do some individuals recall dreams every day while others hardly ever recall one? We hypothesized that sleep inertia—the transient period following awakening associated with brain and cognitive alterations—could be a key mechanism to explain interindividual differences in dream recall at awakening. To test this hypothesis, we measured the brain functional connectivity (combined electroencephalography–functional magnetic resonance imaging) and cognition (memory and mental calculation) of high dream recallers (HR |
Johan N. Meer; Michael Breakspear; Luke J. Chang; Saurabh Sonkusare; Luca Cocchi Movie viewing elicits rich and reliable brain state dynamics Journal Article In: Nature Communications, vol. 11, pp. 5004, 2020. @article{Meer2020, Adaptive brain function requires that sensory impressions of the social and natural milieu are dynamically incorporated into intrinsic brain activity. While dynamic switches between brain states have been well characterised in resting state acquisitions, the remodelling of these state transitions by engagement in naturalistic stimuli remains poorly understood. Here, we show that the temporal dynamics of brain states, as measured in fMRI, are reshaped from predominantly bistable transitions between two relatively indistinct states at rest, toward a sequence of well-defined functional states during movie viewing whose transitions are temporally aligned to specific features of the movie. The expression of these brain states covaries with different physiological states and reflects subjectively rated engagement in the movie. In sum, a data-driven decoding of brain states reveals the distinct reshaping of functional network expression and reliable state transitions that accompany the switch from resting state to perceptual immersion in an ecologically valid sensory experience. |
Tianlu Wang; Ronald Peeters; Dante Mantini; Céline R. Gillebert In: NeuroImage: Clinical, vol. 28, pp. 102513, 2020. @article{Wang2020g, The intraparietal sulcus (IPS) plays a key role in the distribution of attention across the visual field. In stroke patients, an imbalance between left and right IPS activity has been related to a spatial bias in visual attention characteristic of hemispatial neglect. In this study, we describe the development and implementation of a real-time functional magnetic resonance imaging neurofeedback protocol to noninvasively and volitionally control the interhemispheric IPS activity balance in neurologically healthy participants. Six participants performed three neurofeedback training sessions across three weeks. Half of them trained to voluntarily increase brain activity in left relative to right IPS, while the other half trained to regulate the IPS activity balance in the opposite direction. Before and after the training, we estimated the distribution of attention across the visual field using a whole and partial report task. Over the course of the training, two of the three participants in the left-IPS group increased the activity in the left relative to the right IPS, while the participants in the right-IPS group were not able to regulate the interhemispheric IPS activity balance. We found no evidence for a decrease in resting-state functional connectivity between left and right IPS, and the spatial distribution of attention did not change over the course of the experiment. This study indicates the possibility to voluntarily modulate the interhemispheric IPS activity balance. Further research is warranted to examine the effectiveness of this technique in the rehabilitation of post-stroke hemispatial neglect. |
Clifford I. Workman; Keith J. Yoder; Jean Decety The dark side of morality–neural mechanisms underpinning moral convictions and support for violence Journal Article In: AJOB Neuroscience, vol. 11, no. 4, pp. 269–284, 2020. @article{Workman2020, People are motivated by shared social values that, when held with moral conviction, can serve as compelling mandates capable of facilitating support for ideological violence. The current study examined this dark side of morality by identifying specific cognitive and neural mechanisms associated with beliefs about the appropriateness of sociopolitical violence, and determining the extent to which the engagement of these mechanisms was predicted by moral convictions. Participants reported their moral convictions about a variety of sociopolitical issues prior to undergoing functional MRI scanning. During scanning, they were asked to evaluate the appropriateness of violent protests that were ostensibly congruent or incongruent with their views about sociopolitical issues. Complementary univariate and multivariate analytical strategies comparing neural responses to congruent and incongruent violence identified neural mechanisms implicated in processing salience and in the encoding of subjective value. As predicted, neuro-hemodynamic response was modulated parametrically by individuals' beliefs about the appropriateness of congruent relative to incongruent sociopolitical violence in ventromedial prefrontal cortex, and by moral conviction in ventral striatum. Overall moral conviction was predicted by neural response to congruent relative to incongruent violence in amygdala. Together, these findings indicate that moral conviction about sociopolitical issues serves to increase their subjective value, overriding natural aversion to interpersonal harm. |
Florent Meyniel Brain dynamics for confidence-weighted learning Journal Article In: PLoS Computational Biology, vol. 16, no. 6, pp. e1007935, 2020. @article{Meyniel2020, Learning in a changing, uncertain environment is a difficult problem. A popular solution is to predict future observations and then use surprising outcomes to update those predictions. However, humans also have a sense of confidence that characterizes the precision of their predictions. Bayesian models use a confidence-weighting principle to regulate learning: For a given surprise, the update is smaller when the confidence about the prediction was higher. Prior behavioral evidence indicates that human learning adheres to this confidence-weighting principle. Here, we explored the human brain dynamics sub-tending the confidenceweighting of learning using magneto-encephalography (MEG). During our volatile probability learning task, subjects' confidence reports conformed with Bayesian inference. MEG revealed several stimulus-evoked brain responses whose amplitude reflected surprise, and some of them were further shaped by confidence: Surprise amplified the stimulus-evoked response whereas confidence dampened it. Confidence about predictions also modulated several aspects of the brain state: Pupil-linked arousal and beta-range (15-30 Hz) oscillations. The brain state in turn modulated specific stimulus-evoked surprise responses following the confidence-weighting principle. Our results thus indicate that there exist, in the human brain, signals reflecting surprise that are dampened by confidence in a way that is appropriate for learning according to Bayesian inference. They also suggest a mechanism for confidence-weighted learning: Confidence about predictions would modulate intrinsic properties of the brain state to amplify or dampen surprise responses evoked by discrepant observations. |
Anna M. Monk; Gareth R. Barnes; Eleanor A. Maguire The effect of object type on building scene imagery — An MEG study Journal Article In: Frontiers in Human Neuroscience, vol. 14, pp. 592175, 2020. @article{Monk2020, Previous studies have reported that some objects evoke a sense of local three-dimensional space (space-defining; SD), while others do not (space-ambiguous; SA), despite being imagined or viewed in isolation devoid of a background context. Moreover, people show a strong preference for SD objects when given a choice of objects with which to mentally construct scene imagery. When deconstructing scenes, people retain significantly more SD objects than SA objects. It, therefore, seems that SD objects might enjoy a privileged role in scene construction. In the current study, we leveraged the high temporal resolution of magnetoencephalography (MEG) to compare the neural responses to SD and SA objects while they were being used to build imagined scene representations, as this has not been examined before using neuroimaging. On each trial, participants gradually built a scene image from three successive auditorily-presented object descriptions and an imagined 3D space. We then examined the neural dynamics associated with the points during scene construction when either SD or SA objects were being imagined. We found that SD objects elicited theta changes relative to SA objects in two brain regions, the right ventromedial prefrontal cortex (vmPFC) and the right superior temporal gyrus (STG). Furthermore, using dynamic causal modeling, we observed that the vmPFC drove STG activity. These findings may indicate that SD objects serve to activate schematic and conceptual knowledge in vmPFC and STG upon which scene representations are then built. |
Rick A. Adams; Daniel Bush; Fanfan Zheng; Sofie S. Meyer; Raphael Kaplan; Stelios Orfanos; Tiago Reis Marques; Oliver D. Howes; Neil Burgess Impaired theta phase coupling underlies frontotemporal dysconnectivity in schizophrenia Journal Article In: Brain, vol. 143, no. 3, pp. 1261–1277, 2020. @article{Adams2020a, Frontotemporal dysconnectivity is a key pathology in schizophrenia. The specific nature of this dysconnectivity is unknown, but animal models imply dysfunctional theta phase coupling between hippocampus and medial prefrontal cortex (mPFC). We tested this hypothesis by examining neural dynamics in 18 participants with a schizophrenia diagnosis, both medicated and unmedicated; and 26 age, sex and IQ matched control subjects. All participants completed two tasks known to elicit hippocampal-prefrontal theta coupling: a spatial memory task (during magnetoencephalography) and a memory integration task. In addition, an overlapping group of 33 schizophrenia and 29 control subjects underwent PET to measure the availability of GABAARs expressing the a5 subunit (concentrated on hippocampal somatostatin interneurons). We demonstrate-in the spatial memory task, during memory recall-that theta power increases in left medial temporal lobe (mTL) are impaired in schizophrenia, as is theta phase coupling between mPFC and mTL. Importantly, the latter cannot be explained by theta power changes, head movement, antipsychotics, cannabis use, or IQ, and is not found in other frequency bands. Moreover, mPFC-mTL theta coupling correlated strongly with performance in controls, but not in subjects with schizophrenia, who were mildly impaired at the spatial memory task and no better than chance on the memory integration task. Finally, mTL regions showing reduced phase coupling in schizophrenia magnetoencephalography participants overlapped substantially with areas of diminished a5-GABAAR availability in the wider schizophrenia PET sample. These results indicate that mPFC-mTL dysconnectivity in schizophrenia is due to a loss of theta phase coupling, and imply a5-GABAARs (and the cells that express them) have a role in this process. |
Yasaman Bagherzadeh; Daniel Baldauf; Dimitrios Pantazis; Robert Desimone Alpha synchrony and the neurofeedback control of spatial attention Journal Article In: Neuron, vol. 105, no. 3, pp. 577–587.e5, 2020. @article{Bagherzadeh2020, During MEG neurofeedback training, subjects learned to manipulate the degree of alpha synchrony over the left versus right parietal cortex. The change in alpha synchrony was associated with a corresponding bias in visual processing and attention in the corresponding visual field. |
Sonya Bells; Silvia L. Isabella; Donald C. Brien; Brian C. Coe; Douglas P. Munoz; Donald J. Mabbott; Douglas O. Cheyne Mapping neural dynamics underlying saccade preparation and execution and their relation to reaction time and direction errors Journal Article In: Human Brain Mapping, vol. 41, no. 7, pp. 1934–1949, 2020. @article{Bells2020, Our ability to control and inhibit automatic behaviors is crucial for negotiating complex environments, all of which require rapid communication between sensory, motor, and cognitive networks. Here, we measured neuromagnetic brain activity to investigate the neural timing of cortical areas needed for inhibitory control, while 14 healthy young adults performed an interleaved prosaccade (look at a peripheral visual stimulus) and antisaccade (look away from stimulus) task. Analysis of how neural activity relates to saccade reaction time (SRT) and occurrence of direction errors (look at stimulus on antisaccade trials) provides insight into inhibitory control. Neuromagnetic source activity was used to extract stimulus-aligned and saccade-aligned activity to examine temporal differences between prosaccade and antisaccade trials in brain regions associated with saccade control. For stimulus-aligned antisaccade trials, a longer SRT was associated with delayed onset of neural activity within the ipsilateral parietal eye field (PEF) and bilateral frontal eye field (FEF). Saccade-aligned activity demonstrated peak activation 10ms before saccade-onset within the contralateral PEF for prosaccade trials and within the bilateral FEF for antisaccade trials. In addition, failure to inhibit prosaccades on anti-saccade trials was associated with increased activity prior to saccade onset within the FEF contralateral to the peripheral stimulus. This work on dynamic activity adds to our knowledge that direction errors were due, at least in part, to a failure to inhibit automatic prosaccades. These findings provide novel evidence in humans regarding the temporal dynamics within oculomotor areas needed for saccade programming and the role frontal brain regions have on top-down inhibitory control. |
Mathieu Bourguignon; Martijn Baart; Efthymia C. Kapnoula; Nicola Molinaro Lip-reading enables the brain to synthesize auditory features of unknown silent speech Journal Article In: Journal of Neuroscience, vol. 40, no. 5, pp. 1053–1065, 2020. @article{Bourguignon2020, Lip-reading is crucial for understanding speech in challenging conditions. But how the brain extracts meaning from, silent, visual speech is still under debate. Lip-reading in silence activates the auditory cortices, but it is not known whether such activation reflects immediate synthesis of the corresponding auditory stimulus or imagery of unrelated sounds. To disentangle these possibilities, we used magnetoencephalography to evaluate how cortical activity in 28 healthy adult humans (17 females) entrained to the auditory speech envelope and lip movements (mouth opening) when listening to a spoken story without visual input (audio-only), and when seeing a silent video of a speaker articulating another story (video-only). In video-only, auditory cortical activity entrained to the absent auditory signal at frequencies <1 Hz more than to the seen lip movements. This entrainment process was characterized by an auditory-speech-to-brain delay of ~70 ms in the left hemisphere, compared with ~20 ms in audio-only. Entrainment to mouth opening was found in the right angular gyrus at <1 Hz, and in early visual cortices at 1– 8 Hz. These findings demonstrate that the brain can use a silent lip-read signal to synthesize a coarse-grained auditory speech representation in early auditory cortices. Our data indicate the following underlying oscillatory mechanism: seeing lip movements first modulates neuronal activity in early visual cortices at frequencies that match articulatory lip movements; the right angular gyrus then extracts slower features of lip movements, mapping them onto the corresponding speech sound features; this information is fed to auditory cortices, most likely facilitating speech parsing. |
Nadine Dijkstra; Luca Ambrogioni; Diego Vidaurre; Marcel Gerven Neural dynamics of perceptual inference and its reversal during imagery Journal Article In: eLife, vol. 9, pp. 1–19, 2020. @article{Dijkstra2020, After the presentation of a visual stimulus, neural processing cascades from low-level sensory areas to increasingly abstract representations in higher-level areas. It is often hypothesised that a reversal in neural processing underlies the generation of mental images as abstract representations are used to construct sensory representations in the absence of sensory input. According to predictive processing theories, such reversed processing also plays a central role in later stages of perception. Direct experimental evidence of reversals in neural information flow has been missing. Here, we used a combination of machine learning and magnetoencephalography to characterise neural dynamics in humans. We provide direct evidence for a reversal of the perceptual feed-forward cascade during imagery and show that, during perception, such reversals alternate with feed-forward processing in an 11 Hz oscillatory pattern. Together, these results show how common feedback processes support both veridical perception and mental imagery. |
Tamar Kolodny; Michael Paul Schallmo; Jennifer Gerdts; Raphael A. Bernier; Scott O. Murray Response dissociation in hierarchical cortical circuits: A unique feature of autism spectrum disorder Journal Article In: Journal of Neuroscience, vol. 40, no. 10, pp. 2269–2281, 2020. @article{Kolodny2020, A prominent hypothesis regarding the pathophysiology of autism is that an increase in the balance between neural excitation and inhibition results in an increase in neural responses. However, previous reports of population-level response magnitude in individuals with autism have been inconsistent. Critically, network interactions have not been considered in previous neuroimaging studies of excitation and inhibition imbalance in autism. In particular, a defining characteristic of cortical organization is its hierarchical and interactive structure; sensory and cognitive systems are comprised of networks where later stages inherit and build upon the processing of earlier input stages, and also influence and shape earlier stages by top-down modulation. Here we used the well established connections of the human visual system to examine response magnitudes in a higher-order motion processing region [middle temporal area (MT+)] and its primary input region (V1). Simple visual stimuli were presented to adult individuals with autism spectrum disorders (ASD; n = 24, mean age 23 years, 8 females) and neurotypical controls (n = 24, mean age 22, 8 females) during fMRI scanning. We discovered a strong dissociation of fMRI response magnitude between region MT+ and V1 in individuals with ASD: individuals with high MT+ responses had attenuated V1 responses. The magnitude of MT+ amplification and of V1 attenuation was associated with autism severity, appeared to result from amplified suppressive feedback from MT+ to V1, and was not present in neurotypical controls. Our results reveal the potential role of altered hierarchical network interactions in the pathophysiology of ASD. |
Elizabeth S. Lorenc; Annelinde R. E. Vandenbroucke; Derek E. Nee; Floris P. Lange; Mark D'Esposito Dissociable neural mechanisms underlie currently-relevant, future-relevant, and discarded working memory representations Journal Article In: Scientific Reports, vol. 10, pp. 11195, 2020. @article{Lorenc2020, In daily life, we use visual working memory (WM) to guide our actions. While attending to currently-relevant information, we must simultaneously maintain future-relevant information, and discard information that is no longer relevant. However, the neural mechanisms by which unattended, but future-relevant, information is maintained in working memory, and future-irrelevant information is discarded, are not well understood. Here, we investigated representations of these different information types, using functional magnetic resonance imaging in combination with multivoxel pattern analysis and computational modeling based on inverted encoding model simulations. We found that currently-relevant WM information in the focus of attention was maintained through representations in visual, parietal and posterior frontal brain regions,whereas deliberate forgetting led to suppression of the discarded representations in early visual cortex. In contrast, future-relevant information was neither inhibited nor actively maintained in these areas. These findings suggest that different neural mechanisms underlie the WM representation of currently- and future-relevant information, as compared to information that is discarded from WM. |
Masih Rahmati; Kevin DeSimone; Clayton E. Curtis; Kartik K. Sreenivasan Spatially-specific working memory activity in the human superior colliculus Journal Article In: Journal of Neuroscience, vol. 40, no. 49, pp. 9487–9495, 2020. @article{Rahmati2020, Theoretically, working memory (WM) representations are encoded by population activity of neurons with distributed tuning across the stored feature. Here, we leverage computational neuroimaging approaches to map the topographic organization of human superior colliculus (SC) and model how population activity in SC encodes WM representations. We first modeled receptive field properties of voxels in SC, deriving a detailed topographic organization resembling that of the primate SC. Neural activity within human (5 male and 1 female) SC persisted throughout a retention interval of several types of modified memory-guided saccade tasks. Assuming an underlying neural architecture of the SC based on its retinotopic organization, we used an encoding model to show that the pattern of activity in human SC represents locations stored in WM. Our tasks and models allowed us to dissociate the locations of visual targets and the motor metrics of memory-guided saccades from the spatial locations stored in WM, thus confirming that human SC represents true WM information. These data have several important implications. They add the SC to a growing number of cortical and subcortical brain areas that form distributed networks supporting WM functions. Moreover, they specify a clear neural mechanism by which topographically organized SC encodes WM representations. |
Zvi N. Roth; Minyoung Ryoo; Elisha P. Merriam Task-related activity in human visual cortex Journal Article In: PLoS Biology, vol. 18, no. 11, pp. 1–28, 2020. @article{Roth2020, The brain exhibits widespread endogenous responses in the absence of visual stimuli, even at the earliest stages of visual cortical processing. Such responses have been studied in monkeys using optical imaging with a limited field of view over visual cortex. Here, we used functional MRI (fMRI) in human participants to study the link between arousal and endogenous responses in visual cortex. The response that we observed was tightly entrained to task timing, was spatially extensive, and was independent of visual stimulation. We found that this response follows dynamics similar to that of pupil size and heart rate, suggesting that task-related activity is related to arousal. Finally, we found that higher reward increased response amplitude while decreasing its trial-To-Trial variability (i.e., the noise). Computational simulations suggest that increased temporal precision underlies both of these observations. Our findings are consistent with optical imaging studies in monkeys and support the notion that arousal increases precision of neural activity. |
Tom Salomon; Rotem Botvinik-Nezer; Shiran Oren; Tom Schonberg Enhanced striatal and prefrontal activity is associated with individual differences in nonreinforced preference change for faces Journal Article In: Human Brain Mapping, vol. 41, no. 4, pp. 1043–1060, 2020. @article{Salomon2020, Developing effective preference modification paradigms is crucial to improve the quality of life in a wide range of behaviors. The cue-approach training (CAT) paradigm has been introduced as an effective tool to modify preferences lasting months, without external reinforcements, using the mere association of images with a cue and a speeded button response. In the current work for the first time, we used fMRI with faces as stimuli in the CAT paradigm, focusing on face-selective brain regions. We found a behavioral change effect of CAT with faces immediately and 1-month after training, however face-selective regions were not indicative of behavioral change and thus preference change is less likely to rely on face processing brain regions. Nevertheless, we found that during training, fMRI activations in the ventral striatum were correlated with individual preference change. We also found a correlation between preference change and activations in the ventromedial prefrontal cortex during the binary choice phase. Functional connectivity among striatum, prefrontal regions, and high-level visual regions was also related to individual preference change. Our work sheds new light on the involvement of neural mechanisms in the process of valuation. This could lead to development of novel real-world interventions. |
Alexandre Sayal; Teresa Sousa; João V. Duarte; Gabriel N. Costa; Ricardo Martins; Miguel Castelo-Branco Identification of competing neural mechanisms underlying positive and negative perceptual hysteresis in the human visual system Journal Article In: NeuroImage, vol. 221, pp. 117153, 2020. @article{Sayal2020, Hysteresis is a well-known phenomenon in physics that relates changes in a system with its prior history. It is also part of human visual experience (perceptual hysteresis), and two different neural mechanisms might explain it: persistence (a cause of positive hysteresis), which forces to keep a current percept for longer, and adaptation (a cause of negative hysteresis), which in turn favors the switch to a competing percept early on. In this study, we explore the neural correlates underlying these mechanisms and the hypothesis of their competitive balance, by combining behavioral assessment with fMRI. We used machine learning on the behavioral data to distinguish between positive and negative hysteresis, and discovered a neural correlate of persistence at a core region of the ventral attention network, the anterior insula. Our results add to the understanding of perceptual multistability and reveal a possible mechanistic explanation for the regulation of different forms of perceptual hysteresis. |
Daniel J. Schad; Michael A. Rapp; Maria Garbusow; Stephan Nebe; Miriam Sebold; Elisabeth Obst; Christian Sommer; Lorenz Deserno; Milena Rabovsky; Eva Friedel; Nina Romanczuk-Seiferth; Hans Ulrich Wittchen; Ulrich S. Zimmermann; Henrik Walter; Philipp Sterzer; Michael N. Smolka; Florian Schlagenhauf; Andreas Heinz; Peter Dayan; Quentin J. M. M. Huys Dissociating neural learning signals in human sign- and goal-trackers Journal Article In: Nature Human Behaviour, vol. 4, no. 2, pp. 201–214, 2020. @article{Schad2020, Individuals differ in how they learn from experience. In Pavlovian conditioning models, where cues predict reinforcer delivery at a different goal location, some animals—called sign-trackers—come to approach the cue, whereas others, called goal-trackers, approach the goal. In sign-trackers, model-free phasic dopaminergic reward-prediction errors underlie learning, which renders stimuli ‘wanted'. Goal-trackers do not rely on dopamine for learning and are thought to use model-based learning. We demonstrate this double dissociation in 129 male humans using eye-tracking, pupillometry and functional magnetic resonance imaging informed by computational models of sign- and goal-tracking. We show that sign-trackers exhibit a neural reward prediction error signal that is not detectable in goal-trackers. Model-free value only guides gaze and pupil dilation in sign-trackers. Goal-trackers instead exhibit a stronger model-based neural state prediction error signal. This model-based construct determines gaze and pupil dilation more in goal-trackers. |
Constanze Schmitt; Bianca R. Baltaretu; J. Douglas Crawford; Frank Bremmer A causal role of area hMST for self-motion perception in humans Journal Article In: Cerebral Cortex Communications, pp. 1–14, 2020. @article{Schmitt2020, Previous studies in the macaque monkey have provided clear causal evidence for an involvement of the medial-superior-temporal area (MST) in the perception of self-motion. These studies also revealed an overrepresentation of contraversive heading. Human imaging studies have identified a functional equivalent (hMST) of macaque area MST. Yet, causal evidence of hMST in heading perception is lacking. We employed neuronavigated transcranial magnetic stimulation (TMS) to test for such a causal relationship. We expected TMS over hMST to induce increased perceptual variance (i.e., impaired precision), while leaving mean heading perception (accuracy) unaffected. We presented 8 human participants with an optic flow stimulus simulating forward self-motion across a ground plane in one of 3 directions. Participants indicated perceived heading. In 57% of the trials, TMS pulses were applied, temporally centered on self-motion onset. TMS stimulation site was either right-hemisphere hMST, identified by a functional magnetic resonance imaging (fMRI) localizer, or a control-area, just outside the fMRI localizer activation. As predicted, TMS over area hMST, but not over the control-area, increased response variance of perceived heading as compared with noTMS stimulation trials. As hypothesized, this effect was strongest for contraversive self-motion. These data provide a first causal evidence for a critical role of hMST in visually guided navigation. |
Rebekka Schröder; Anna-Maria Kasparbauer; Inga Meyhöfer; Maria Steffens; Peter Trautner; Ulrich Ettinger Functional connectivity during smooth pursuit eye movements Journal Article In: Journal of Neurophysiology, vol. 124, pp. 1839–1856, 2020. @article{Schroeder2020, Smooth pursuit eye movements (SPEM) hold the image of a slowly moving stimulus on the fovea. The neural system underlying SPEM primarily includes visual, parietal and frontal areas. In the present study, we investigated how these areas are functionally coupled and how these couplings are influenced by target motion frequency. To this end, healthy participants (N=57) were instructed to follow a sinusoidal target stimulus moving horizontally at two different frequencies (0.2 Hz, 0.4 Hz). Eye movements and BOLD activity were recorded simultaneously. Functional connectivity of the key areas of the SPEM network was investigated using a Psychophysiological Interaction (PPI) approach. It was analyzed how activity in five eye movement related seed regions (lateral geniculate nucleus, V1, V5, posterior parietal cortex, frontal eye fields) relates to activity in other parts of the brain during SPEM. The behavioral results showed clear deterioration of SPEM performance at higher target frequency. BOLD activity during SPEM vs. fixation occurred in a geniculo-occipito-parieto-frontal network, replicating previous findings. PPI analysis yielded wide-spread, partially overlapping networks. Especially frontal eye fields and posterior parietal cortex showed task-dependent connectivity to large parts of the entire cortex, while other seed regions demonstrated more regionally focused connectivity. Higher target frequency was associated with stronger activations in visual areas but had no effect on functional connectivity. In summary, the results confirm and extend previous knowledge regarding the neural mechanisms underlying SPEM and provide a valuable basis for further investigations such as in patients with SPEM impairments and known alterations in brain connectivity. |
Sarah Schuster; Stefan Hawelka; Nicole Alexandra Himmelstoss; Fabio Richlan; Florian Hutzler The neural correlates of word position and lexical predictability during sentence reading: Evidence from fixation-related fMRI Journal Article In: Language, Cognition and Neuroscience, vol. 35, no. 5, pp. 613–624, 2020. @article{Schuster2020, By means of combining eye-tracking and fMRI, the present study aimed to investigate aspects of higher linguistic processing during natural reading which were formerly hard to assess with traditional paradigms. Specifically, we investigated the haemodynamic effects of incremental sentence comprehension–as operationalised by word position–and its relation to context-based word-level effects of lexical predictability. We observed that an increasing amount of words being processed was associated with an increase in activation in the left posterior middle temporal and angular gyri. At the same time, left occipito-temporal regions showed a decrease in activation with increasing word position. Region of interest (ROI) analyses revealed differential effects of word position and predictability within dissociable parts of the semantic network–showing that it is expedient to consider these effects conjointly. |
Simon R. Steinkamp; Simone Vossel; Gereon R. Fink; Ralph Weidner Attentional reorientation along the meridians of the visual field: Are there different neural mechanisms at play? Journal Article In: Human Brain Mapping, vol. 41, no. 13, pp. 3765–3780, 2020. @article{Steinkamp2020, Hemispatial neglect, after unilateral lesions to parietal brain areas, is characterized by an inability to respond to unexpected stimuli in contralesional space. As the visual field's horizontal meridian is most severely affected, the brain networks controlling visuospatial processes might be tuned explicitly to this axis. We investigated such a potential directional tuning in the dorsal and ventral frontoparietal attention networks, with a particular focus on attentional reorientation. We used an orientation-discrimination task where a spatial precue indicated the target position with 80% validity. Healthy participants (n = 29) performed this task in two runs and were required to (re-)orient attention either only along the horizontal or the vertical meridian, while fMRI and behavioral measures were recorded. By using a general linear model for behavioral and fMRI data, dynamic causal modeling for effective connectivity, and other predictive approaches, we found strong statistical evidence for a reorientation effect for horizontal and vertical runs. However, neither neural nor behavioral measures differed between vertical and horizontal reorienting. Moreover, models from one run successfully predicted the cueing condition in the respective other run. Our results suggest that activations in the dorsal and ventral attention networks represent higher-order cognitive processes related to spatial attentional (re-)orientating that are independent of directional tuning and that unilateral attention deficits after brain damage are based on disrupted interactions between higher-level attention networks and sensory areas. |
Emily R. Stern; Carina Brown; Molly Ludlow; Rebbia Shahab; Katherine Collins; Alexis Lieval; Russell H. Tobe; Dan V. Iosifescu; Katherine E. Burdick; Lazar Fleysher The buildup of an urge in obsessive–compulsive disorder: Behavioral and neuroimaging correlates Journal Article In: Human Brain Mapping, vol. 41, no. 6, pp. 1611–1625, 2020. @article{Stern2020, Obsessive–compulsive disorder (OCD) is highly heterogeneous. While obsessions often involve fear of harm, many patients report uncomfortable sensations and/or urges that drive repetitive behaviors in the absence of a specific fear. Prior work suggests that urges in OCD may be similar to everyday “urges-for-action” (UFA) such as the urge to blink, swallow, or scratch, but very little work has investigated the pathophysiology underlying urges in OCD. In the current study, we used an urge-to-blink approach to model sensory-based urges that could be experimentally elicited and compared across patients and controls using the same task stimuli. OCD patients and controls suppressed eye blinking over a period of 60 s, alternating with free blinking blocks, while brain activity was measured using functional magnetic resonance imaging. OCD patients showed significantly increased activation in several regions during the early phase of eyeblink suppression (first 30 s), including mid-cingulate, insula, striatum, parietal cortex, and occipital cortex, with lingering group differences in parietal and occipital regions during late eyeblink suppression (last 30 s). There were no differences in brain activation during free blinking blocks, and no conditions where OCD patients showed reduced activation compared to controls. In an exploratory analysis of blink counts performed in a subset of subjects, OCD patients were less successful than controls in suppressing blinks. These data indicate that OCD patients exhibit altered brain function and behavior when experiencing and suppressing the urge to blink, raising the possibility that the disorder is associated with a general abnormality in the UFA system that could ultimately be targeted by future treatments. |
Susanne Stoll; Nonie J. Finlayson; D. Samuel Schwarzkopf Topographic signatures of global object perception in human visual cortex Journal Article In: NeuroImage, vol. 220, pp. 116926, 2020. @article{Stoll2020, Our visual system readily groups dynamic fragmented input into global objects. How the brain represents global object perception remains however unclear. To address this question, we recorded brain responses using functional magnetic resonance imaging whilst observers viewed a dynamic bistable stimulus that could either be perceived globally (i.e., as a grouped and coherently moving shape) or locally (i.e., as ungrouped and incoherently moving elements). We further estimated population receptive fields and used these to back-project the brain activity measured during stimulus perception into visual space via a searchlight procedure. Global perception resulted in universal suppression of responses in lower visual cortex accompanied by wide-spread enhancement in higher object-sensitive cortex. However, follow-up experiments indicated that higher object-sensitive cortex is suppressed if global perception lacks shape grouping, and that grouping-related suppression can be diffusely confined to stimulated sites and accompanied by background enhancement once stimulus size is reduced. These results speak to a non-generic involvement of higher object-sensitive cortex in perceptual grouping and point to an enhancement-suppression mechanism mediating the perception of figure and ground. |
Simona Monaco; Giulia Malfatti; Jody C. Culham; Luigi Cattaneo; Luca Turella Decoding motor imagery and action planning in the early visual cortex: Overlapping but distinct neural mechanisms Journal Article In: NeuroImage, vol. 218, pp. 116981, 2020. @article{Monaco2020, Recent evidence points to a role of the primary visual cortex that goes beyond visual processing into high-level cognitive and motor-related functions, including action planning, even in absence of feedforward visual information. It has been proposed that, at the neural level, motor imagery is a simulation based on motor representations, and neuroimaging studies have shown overlapping and shared activity patterns for motor imagery and action execution in frontal and parietal cortices. Yet, the role of the early visual cortex in motor imagery remains unclear. Here we used multivoxel pattern analyses on functional magnetic resonance imaging (fMRI) data to examine whether the content of motor imagery and action intention can be reliably decoded from the activity patterns in the retinotopic location of the target object in the early visual cortex. Further, we investigated whether the discrimination between specific actions generalizes across imagined and intended movements. Eighteen right-handed human participants (11 females) imagined or performed delayed hand actions towards a centrally located object composed of a small shape attached on a large shape. Actions consisted of grasping the large or small shape, and reaching to the center of the object. We found that despite comparable fMRI signal amplitude for different planned and imagined movements, activity patterns in the early visual cortex, as well as dorsal premotor and anterior intraparietal cortex, accurately represented action plans and action imagery. However, movement content is similar irrespective of whether actions are actively planned or covertly imagined in parietal but not early visual or premotor cortex, suggesting a generalized motor representation only in regions that are highly specialized in object directed grasping actions and movement goals. In sum, action planning and imagery have overlapping but non identical neural mechanisms in the cortical action network. |
Cristian Morales; Suril Gohel; Xiaobo Li; Mitchell Scheiman; Bharat B. Biswal; Elio M. Santos; Chang Yaramothu; Tara L. Alvarez Test–retest reliability of functional magnetic resonance imaging activation for a vergence eye movement task Journal Article In: Neuroscience Bulletin, vol. 36, no. 5, pp. 506–518, 2020. @article{Morales2020a, Vergence eye movements are the inward and outward rotation of the eyes responsible for binocular coordination. While studies have mapped and investigated the neural substrates of vergence, it is not well understood whether vergence eye movements evoke the blood oxygen level-dependent signal reliably in separate experimental visits. The test–retest reliability of stimulus-induced vergence eye movement tasks during a functional magnetic resonance imaging (fMRI) experiment is important for future randomized clinical trials (RCTs). In this study, we established region of interest (ROI) masks for the vergence neural circuit. Twenty-seven binocularly normal young adults participated in two functional imaging sessions measured on different days on the same 3T Siemens scanner. The fMRI experiments used a block design of sustained visual fixation and rest blocks interleaved between task blocks that stimulated eight or four vergence eye movements. The test–retest reliability of task-activation was assessed using the intraclass correlation coefficient (ICC), and that of spatial extent was assessed using the Dice coefficient. Functional activation during the vergence eye movement task of eight movements compared to rest was repeatable within the primary visual cortex (ICC = 0.8), parietal eye fields (ICC = 0.6), supplementary eye field (ICC = 0.5), frontal eye fields (ICC = 0.5), and oculomotor vermis (ICC = 0.6). The results demonstrate significant test–retest reliability in the ROIs of the vergence neural substrates for functional activation magnitude and spatial extent using the stimulus protocol of a task block stimulating eight vergence eye movements compared to sustained fixation. These ROIs can be used in future longitudinal RCTs to study patient populations with vergence dysfunctions. |
Cristian Morales; Suril Gohel; Mitchell Scheiman; Xiaobo Li; Elio M. Santos; Ayushi Sangoi; Tara L. Alvarez Test-retest of a phoria adaptation stimulus-induced functional MRI experiment Journal Article In: Journal of Vision, vol. 20, no. 8, pp. 1–15, 2020. @article{Morales2020, This study was designed to identify the neural substrates activated during a phoria adaptation task using functional magnetic resonance imaging (MRI) in young adults with normal binocular vision and to test the repeatability of the fMRI measurements for this protocol. The phoria adaptation task consisted of a block protocol of 90 seconds of near visual crossed fixation followed by 90 seconds of far visual uncrossed fixation, repeated three times; the data were collected during two different experimental sessions. Results showed that the oculomotor vermis, cuneus, and primary visual cortex had the greatest functional activity within the regions of interest studied when stimulated by the phoria adaptation task. The oculomotor vermis functional activity had an intraclass correlation coefficient (ICC) of 0.3, whereas the bilateral cuneus and primary visual cortex had good ICC results of greater than 0.6. These results suggest that the sustained visual fixation task described within this study reliably activates the neural substrates of phoria adaptation. This protocol establishes a methodology that can be used in future longitudinal studies investigating therapeutic interventions that may modify phoria adaptation. |
Dillan J. Newbold; Timothy O. Laumann; Catherine R. Hoyt; Jacqueline M. Hampton; David F. Montez; Ryan V. Raut; Mario Ortega; Anish Mitra; Ashley N. Nielsen; Derek B. Miller; Babatunde Adeyemo; Annie L. Nguyen; Kristen M. Scheidter; Aaron B. Tanenbaum; Andrew N. Van; Scott Marek; Bradley L. Schlaggar; Alexandre R. Carter; Deanna J. Greene; Evan M. Gordon; Marcus E. Raichle; Steven E. Petersen; Abraham Z. Snyder; Nico U. F. Dosenbach Plasticity and spontaneous activity pulses in disused human brain circuits Journal Article In: Neuron, vol. 107, no. 3, pp. 580–589.e6, 2020. @article{Newbold2020, To induce brain plasticity in humans, we casted the dominant upper extremity for 2 weeks and tracked changes in functional connectivity using daily 30-min scans of resting-state functional MRI (rs-fMRI). Casting caused cortical and cerebellar regions controlling the disused extremity to functionally disconnect from the rest of the somatomotor system, while internal connectivity within the disused sub-circuit was maintained. Functional disconnection was evident within 48 h, progressed throughout the cast period, and reversed after cast removal. During the cast period, large, spontaneous pulses of activity propagated through the disused somatomotor sub-circuit. The adult brain seems to rely on regular use to maintain its functional architecture. Disuse-driven spontaneous activity pulses may help preserve functionally disconnected sub-circuits. |
Ioannis Agtzidis; Inga Meyhöfer; Michael Dorr; Rebekka Lencer Following Forrest Gump: Smooth pursuit related brain activation during free movie viewing Journal Article In: NeuroImage, vol. 216, pp. 116491, 2020. @article{Agtzidis2020, Most fMRI studies investigating smooth pursuit (SP) related brain activity have used simple synthetic stimuli such as a sinusoidally moving dot. However, real-life situations are much more complex and SP does not occur in isolation but within sequences of saccades and fixations. This raises the question whether the same brain networks for SP that have been identified under laboratory conditions are activated when following moving objects in a movie. Here, we used the publicly available studyforrest data set that provides eye movement recordings along with 3 T fMRI recordings from 15 subjects while watching the Hollywood movie “Forrest Gump”. All three major eye movement events, namely fixations, saccades, and smooth pursuit, were detected with a state-of-the-art algorithm. In our analysis, smooth pursuit (SP) was the eye movement of interest, while saccades were acting as the steady state of viewing behaviour due to their lower variability. For the fMRI analysis we used an event-related design modelling saccades and SP as regressors initially. Because of the interdependency of SP and content motion, we then added a new low-level content motion regressor to separate brain activations from these two sources. We identified higher BOLD-responses during SP than saccades bilaterally in MT+/V5, in middle cingulate extending to precuneus, and in the right temporoparietal junction. When the motion regressor was added, SP showed higher BOLD-response relative to saccades bilaterally in the cortex lining the superior temporal sulcus, precuneus, and supplementary eye field, presumably due to a confounding effect of background motion. Only parts of V2 showed higher activation during saccades in comparison to SP. Taken together, our approach should be regarded as proof of principle for deciphering brain activity related to SP, which is one of the most prominent eye movements besides saccades, in complex dynamic naturalistic situations. |
Sara Ajina; Miriam Pollard; Holly Bridge The superior colliculus and amygdala support evaluation of face trait in blindsight Journal Article In: Frontiers in Neurology, vol. 11, pp. 769, 2020. @article{Ajina2020, Humans can respond rapidly to viewed expressions of fear, even in the absence of conscious awareness. This is demonstrated using visual masking paradigms in healthy individuals and in patients with cortical blindness due to damage to the primary visual cortex (V1) - so called affective blindsight. Humans have also been shown to implicitly process facial expressions representing important social dimensions. Two major axes, dominance and trustworthiness, are proposed to characterize the social dimensions of face evaluation. The processing of both types of implicit stimuli is believed to occur via similar subcortical pathways involving the amygdala. However, we do not know whether unconscious processing of more subtle expressions of facial traits can occur in blindsight, and if so, how. To test this, we studied 13 patients with unilateral V1 damage and visual field loss. We assessed their ability to detect and discriminate faces that had been manipulated along two orthogonal axes of trustworthiness and dominance to generate five trait levels inside the blind visual field: dominant, submissive, trustworthy, untrustworthy, and neutral. We compared neural activity and functional connectivity in patients classified as blindsight positive or negative for these stimuli. We found that dominant faces were most likely to be detected above chance, with individuals demonstrating unique interactions between performance and face trait. Only patients with blindsight (n = 8) showed significant preference in the superior colliculus and amygdala for face traits in the blind visual field, and a critical functional connection between the amygdala and superior colliculus in the damaged hemisphere. We also found a significant correlation between behavioral performance and fMRI activity in the amygdala and lateral geniculate nucleus across all participants. Our findings confirm that affective blindsight involving the superior colliculus and amygdala extends to the processing of socially salient but emotionally neutral facial expressions when V1 is damaged. This pathway is distinct from that which supports motion blindsight, as both types of blindsight can exist in the absence of the other with corresponding patterns of residual connectivity. |
Noor Z. Al Dahhan; John R. Kirby; Ying Chen; Donald C. Brien; Douglas P. Munoz Examining the neural and cognitive processes that underlie reading through naming speed tasks Journal Article In: European Journal of Neuroscience, vol. 51, no. 11, pp. 2277–2298, 2020. @article{AlDahhan2020, We combined fMRI with eye tracking and speech recording to examine the neural and cognitive mechanisms that underlie reading. To simplify the study of the complex processes involved during reading, we used naming speed (NS) tasks (also known as rapid automatized naming or RAN) as a focus for this study, in which average reading right-handed adults named sets of stimuli (letters or objects) as quickly and accurately as possible. Due to the possibility of spoken output during fMRI studies creating motion artifacts, we employed both an overt session and a covert session. When comparing the two sessions, there were no significant differences in behavioral performance, sensorimotor activation (except for regions involved in the motor aspects of speech production) or activation in regions within the left-hemisphere-dominant neural reading network. This established that differences found between the tasks within the reading network were not attributed to speech production motion artifacts or sensorimotor processes. Both behavioral and neuroimaging measures showed that letter naming was a more automatic and efficient task than object naming. Furthermore, specific manipulations to the NS tasks to make the stimuli more visually and/or phonologically similar differentially activated the reading network in the left hemisphere associated with phonological, orthographic and orthographic-to-phonological processing, but not articulatory/motor processing related to speech production. These findings further our understanding of the underlying neural processes that support reading by examining how activation within the reading network differs with both task performance and task characteristics. |
Mareike Bacha-Trams; Elisa Ryyppö; Enrico Glerean; Mikko Sams; Iiro P. Jääskeläinen Social perspective-taking shapes brain hemodynamic activity and eye movements during movie viewing Journal Article In: Social Cognitive and Affective Neuroscience, vol. 15, no. 2, pp. 175–191, 2020. @article{BachaTrams2020, Putting oneself into the shoes of others is an important aspect of social cognition.We measured brain hemodynamic activity and eye-gaze patterns while participants were viewing a shortened version of the movie 'My Sister's Keeper' from two perspectives: That of a potential organ donor, who violates moral norms by refusing to donate her kidney, and that of a potential organ recipient, who suffers in pain. Inter-subject correlation (ISC) of brain activity was significantly higher during the potential organ donor's perspective in dorsolateral and inferior prefrontal, lateral and inferior occipital, and inferior-anterior temporal areas. In the reverse contrast, stronger ISC was observed in superior temporal, posterior frontal and anterior parietal areas. Eye-gaze analysis showed higher proportion of fixations on the potential organ recipient during both perspectives. Taken together, these results suggest that during social perspective-taking different brain areas can be flexibly recruited depending on the nature of the perspective that is taken. |
Valerie M. Beck; Timothy J. Vickery Oculomotor capture reveals trial-by-trial neural correlates of attentional guidance by contents of visual working memory Journal Article In: Cortex, vol. 122, pp. 159–169, 2020. @article{Beck2020, Evidence from attentional and oculomotor capture, contingent capture, and other paradigms suggests that mechanisms supporting human visual working memory (VWM) and visual attention are intertwined. Features held in VWM bias guidance toward matching items even when those features are task irrelevant. However, the neural basis of this interaction is underspecified. Prior examinations using fMRI have primarily relied on coarse comparisons across experimental conditions that produce varying amounts of capture. To examine the neural dynamics of attentional capture on a trial-by-trial basis, we applied an oculomotor paradigm that produced discrete measures of capture. On each trial, subjects were shown a memory item, followed by a blank retention interval, then a saccade target that appeared to the left or right. On some trials, an irrelevant distractor appeared above or below fixation. Once the saccade target was fixated, subjects completed a forced-choice memory test. Critically, either the target or distractor could match the feature held in VWM. Although task irrelevant, this manipulation produced differences in behavior: participants were more likely to saccade first to an irrelevant VWM-matching distractor compared with a non-matching distractor – providing a discrete measure of capture. We replicated this finding while recording eye movements and scanning participants' brains using fMRI. To examine the neural basis of oculomotor capture, we separately modeled the retention interval for capture and non-capture trials within the distractor-match condition. We found that frontal activity, including anterior cingulate cortex and superior frontal gyrus regions, differentially predicted subsequent oculomotor capture by a memory-matching distractor. Other regions previously implicated as involved in attentional capture by VWM-matching items showed no differential activity across capture and non-capture trials, even at a liberal threshold. Our findings demonstrate the power of trial-by-trial analyses of oculomotor capture as a means to examine the underlying relationship between VWM and attentional guidance systems. |
Richard F. Betzel; Lisa Byrge; Farnaz Zamani Esfahlani; Daniel P. Kennedy Temporal fluctuations in the brain's modular architecture during movie-watching Journal Article In: NeuroImage, vol. 213, pp. 116687, 2020. @article{Betzel2020, Brain networks are flexible and reconfigure over time to support ongoing cognitive processes. However, tracking statistically meaningful reconfigurations across time has proven difficult. This has to do largely with issues related to sampling variability, making instantaneous estimation of network organization difficult, along with increased reliance on task-free (cognitively unconstrained) experimental paradigms, limiting the ability to interpret the origin of changes in network structure over time. Here, we address these challenges using time-varying network analysis in conjunction with a naturalistic viewing paradigm. Specifically, we developed a measure of inter-subject network similarity and used this measure as a coincidence filter to identify synchronous fluctuations in network organization across individuals. Applied to movie-watching data, we found that periods of high inter-subject similarity coincided with reductions in network modularity and increased connectivity between cognitive systems. In contrast, low inter-subject similarity was associated with increased system segregation and more rest-like architectures. We then used a data-driven approach to uncover clusters of functional connections that follow similar trajectories over time and are more strongly correlated during movie-watching than at rest. Finally, we show that synchronous fluctuations in network architecture over time can be linked to a subset of features in the movie. Our findings link dynamic fluctuations in network integration and segregation to patterns of inter-subject similarity, and suggest that moment-to-moment fluctuations in functional connectivity reflect shared cognitive processing across individuals. |
Rodrigo M. Braga; Lauren M. DiNicola; Hannah C. Becker; Randy L. Buckner Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks Journal Article In: Journal of neurophysiology, vol. 124, no. 5, pp. 1415–1448, 2020. @article{Braga2020, Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated within the broader context of adjacent networks. The candidate network was first identified using functional connectivity and replicated across individuals, acquisition tasks, and analytical methods. In addition to classical language regions near the perisylvian cortex and temporal pole, regions were also observed in dorsal posterior cingulate, midcingulate, and anterior superior frontal and inferior temporal cortex. The candidate network was selectively activated when processing meaningful (as contrasted with nonword) sentences, whereas spatially adjacent networks showed minimal or even decreased activity. Results were replicated and triplicated across two prospectively acquired cohorts. Examined in relation to adjacent networks, the topography of the language network was found to parallel the motif of other association networks, including the transmodal association networks linked to theory of mind and episodic remembering (often collectively called the default network). The several networks contained juxtaposed regions in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a distinct frontotemporal network situated between language regions and a frontal orofacial motor region and a temporal auditory region. A possibility is that these functionally related sensorimotor regions might anchor specialization of neighboring association regions that develop into a language network. What is most striking is that the canonical language network appears to be just one of multiple similarly organized, differentially specialized distributed networks that populate the evolutionarily expanded zones of human association cortex. |
Johannes Brand; Marco Piccirelli; Marie Claude Hepp-Reymond; Kynan Eng; Lars Michels Brain activation during visually guided finger movements Journal Article In: Frontiers in Human Neuroscience, vol. 14, pp. 309, 2020. @article{Brand2020a, Computer interaction via visually guided hand movements often employs either abstract cursor-based feedback or virtual hand (VH) representations of varying degrees of realism. The effect of changing this visual feedback in virtual reality settings is currently unknown. In this study, 19 healthy right-handed adults performed index finger movements (“action”) and observed movements (“observation”) with four different types of visual feedback: a simple circular cursor (CU), a point light (PL) pattern indicating finger joint positions, a shadow cartoon hand (SH) and a realistic VH. Finger movements were recorded using a data glove, and eye-tracking was recorded optically. We measured brain activity using functional magnetic resonance imaging (fMRI). Both action and observation conditions showed stronger fMRI signal responses in the occipitotemporal cortex compared to baseline. The action conditions additionally elicited elevated bilateral activations in motor, somatosensory, parietal, and cerebellar regions. For both conditions, feedback of a hand with a moving finger (SH, VH) led to higher activations than CU or PL feedback, specifically in early visual regions and the occipitotemporal cortex. Our results show the stronger recruitment of a network of cortical regions during visually guided finger movements with human hand feedback when compared to a visually incomplete hand and abstract feedback. This information could have implications for the design of visually guided tasks involving human body parts in both research and application or training-related paradigms. |
Batel Buaron; Daniel Reznik; Roee Gilron; Roy Mukamel Voluntary actions modulate perception and neural representation of action-consequences in a hand-dependent manner Journal Article In: Cerebral Cortex, vol. 30, no. 12, pp. 6097–6107, 2020. @article{Buaron2020, Evoked neural activity in sensory regions and perception of sensory stimuli are modulated when the stimuli are the consequence of voluntary movement, as opposed to an external source. It has been suggested that such modulations are due to motor commands that are sent to relevant sensory regions during voluntary movement. However, given the anatomical-functional laterality bias of the motor system, it is plausible that the pattern of such behavioral and neural modulations will also exhibit a similar bias, depending on the effector triggering the stimulus (e.g., right/left hand). Here, we examined this issue in the visual domain using behavioral and neural measures (fMRI). Healthy participants judged the relative brightness of identical visual stimuli that were either self-triggered (using right/left hand button presses), or triggered by the computer. Stimuli were presented either in the right or left visual field. Despite identical physical properties of the visual consequences, we found stronger perceptual modulations when the triggering hand was ipsi- (rather than contra-) lateral to the stimulated visual field. Additionally, fMRI responses in visual cortices differentiated between stimuli triggered by right/left hand. Our findings support a model in which voluntary actions induce sensory modulations that follow the anatomical-functional bias of the motor system. |
Nicoletta Cera; João Castelhano; Cátia Oliveira; Joana Carvalho; Ana Luísa Quinta Gomes; Maria Manuela Peixoto; Raquel Pereira; Erick Janssen; Miguel Castelo-Branco; Pedro Nobre The role of anterior and posterior insula in male genital response and in visual attention: An exploratory multimodal fMRI study Journal Article In: Scientific Reports, vol. 10, pp. 18463, 2020. @article{Cera2020, Several studies highlighted the role of insula on several functions and in sexual behavior. This exploratory study examines the relationships among genital responses, brain responses, and eye movements, to disentangle the role played by the anterior and posterior insula during different stages of male sexual response and during visual attention to sexual stimuli. In 19 healthy men, fMRI, eye movement, and penile tumescence data were collected during a visual sexual stimulation task. After a whole-brain analysis comparing neutral and sexual clips and confirming a role for the bilateral insulae, we selected two bilateral seed regions in anterior and posterior insula for functional connectivity analysis. Single-ROI-GLMs were run for the FC target regions. Single-ROI-GLMs were performed based on areas to which participants fixate: “Faces”, “Genitals,” and “Background” with the contrast “Genitals > Faces”. Single-ROI-GLMs with baseline, onset, and sustained PT response for the sexual clips were performed. We found stronger effects for the posterior than the anterior insula. In the target regions of the posterior insula, we found three different pathways: the first involved in visual attention, onset of erection, and sustained erection; the second involved only in the onset of erection, and the third limited to sustained erection. |
Rutvik H. Desai; Wonil Choi; John M. Henderson Word frequency effects in naturalistic reading Journal Article In: Language, Cognition and Neuroscience, vol. 35, no. 5, pp. 1–12, 2020. @article{Desai2020, Word frequency is a central psycholinguistic variable that accounts for substantial variance in language processing. A number of neuroimaging studies have examined frequency at a single word level, typically demonstrating a strong negative, and sometimes positive correlation between frequency and hemodynamic response. Here, 40 subjects read passages of text in an MRI scanner while their eye movements were recorded. We used fixation-related analysis to identify neural activity tied to the frequency of each fixated word. We found that negative correlations with frequency were reduced, while strong positive correlations were found in the temporal and parietal areas associated with semantics. We propose that the processing cost of low frequency words is reduced due to contextual cues. Meanings of high frequency words are more readily accessed and integrated with context resulting in enhanced processing in the semantic system. The results demonstrate similarities and differences between single word and naturalistic text processing. |
2019 |
Rotem Botvinik-Nezer; Roni Iwanir; Felix Holzmeister; Jürgen Huber; Magnus Johannesson; Michael Kirchler; Anna Dreber; Colin F. Camerer; Russell A. Poldrack; Tom Schonberg fMRI data of mixed gambles from the Neuroimaging Analysis Replication and Prediction Study Journal Article In: Scientific Data, vol. 6, pp. 106, 2019. @article{BotvinikNezer2019, There is an ongoing debate about the replicability of neuroimaging research. It was suggested that one of the main reasons for the high rate of false positive results is the many degrees of freedom researchers have during data analysis. In the Neuroimaging Analysis Replication and Prediction Study (NARPS), we aim to provide the first scientific evidence on the variability of results across analysis teams in neuroscience. We collected fMRI data from 108 participants during two versions of the mixed gambles task, which is often used to study decision-making under risk. For each participant, the dataset includes an anatomical (T1 weighted) scan and fMRI as well as behavioral data from four runs of the task. The dataset is shared through OpenNeuro and is formatted according to the Brain Imaging Data Structure (BIDS) standard. Data pre-processed with fMRIprep and quality control reports are also publicly shared. This dataset can be used to study decision-making under risk and to test replicability and interpretability of previous results in the field. |
Chun-Ting Hsu; Roy Clariana; Benjamin Schloss; Ping Li Neurocognitive signatures of naturalistic reading of scientific texts: A fixation-related fMRI study Journal Article In: Scientific Reports, vol. 9, pp. 10678, 2019. @article{Hsu2019, How do students gain scientific knowledge while reading expository text? This study examines the underlying neurocognitive basis of textual knowledge structure and individual readers' cognitive differences and reading habits, including the influence of text and reader characteristics, on outcomes of scientific text comprehension. By combining fixation-related fMRI and multiband data acquisition, the study is among the first to consider self-paced naturalistic reading inside the MRI scanner. Our results revealed the underlying neurocognitive patterns associated with information integration of different time scales during text reading, and significant individual differences due to the interaction between text characteristics (e.g., optimality of the textual knowledge structure) and reader characteristics (e.g., electronic device use habits). Individual differences impacted the amount of neural resources deployed for multitasking and information integration for constructing the underlying scientific mental models based on the text being read. Our findings have significant implications for understanding science reading in a population that is increasingly dependent on electronic devices. |
Ying Joey Zhou; Alexis Pérez-Bellido; Saskia Haegens; Floris P. Lange Perceptual expectations modulate low-frequency activity: A statistical learning magnetoencephalographystudy Journal Article In: Journal of Cognitive Neuroscience, pp. 1–12, 2019. @article{Zhou2019c, Perceptual expectations can change how a visual stimulus is perceived. Recent studies have shown mixed results in terms of whether expectations modulate sensory representations. Here, we used a statistical learning paradigm to study the temporal characteristics of perceptual expectations. We presented participants with pairs of object images organized in a predictive manner and then recorded their brain activity with magnetoencephalography while they viewed expected and unexpected image pairs on the subsequent day. We observed stronger alpha-band (7–14 Hz) activity in response to unexpected compared with expected object images. Specifically, the alpha-band modulation occurred as early as the onset of the stimuli and was most pronounced in left occipito-temporal cortex. Given that the differential response to expected versus unexpected stimuli occurred in sensory regions early in time, our results suggest that expectations modulate perceptual decision-making by changing the sensory response elicited by the stimuli. |
Mariya E. Manahova; Eelke Spaak; Floris P. Lange Familiarity increases processing speed in the visual system Journal Article In: Journal of Cognitive Neuroscience, pp. 1–12, 2019. @article{Manahova2019, Familiarity with a stimulus leads to an attenuated neural response to the stimulus. Alongside this attenuation, recent studies have also observed a truncation of stimulus-evoked activity for familiar visual input. One proposed function of this truncation is to rapidly put neurons in a state of readiness to respond to new input. Here, we examined this hypothesis by presenting human participants with target stimuli that were embedded in rapid streams of familiar or novel distractor stimuli at different speeds of presentation, while recording brain activity using magnetoencephalography and measuring behavioral performance. We investigated the temporal and spatial dynamics of signal truncation and whether this phenomenon bears relationship to participants' ability to categorize target items within a visual stream. Behaviorally, target categorization performance was markedly better when the target was embedded within familiar distractors, and this benefit became more pronounced with increasing speed of presentation. Familiar distractors showed a truncation of neural activity in the visual system. This truncation was strongest for the fastest presentation speeds and peaked in progressively more anterior cortical regions as presentation speeds became slower. Moreover, the neural response evoked by the target was stronger when this target was preceded by familiar distractors. Taken together, these findings demonstrate that item familiarity results in a truncated neural response, is associated with stronger processing of relevant target information, and leads to superior perceptual performance. |
Jessica E. Goold; Wonil Choi; John M. Henderson Cortical control of eye movements in natural reading: Evidence from MVPA Journal Article In: Experimental Brain Research, vol. 237, no. 12, pp. 3099–3107, 2019. @article{Goold2019, Language comprehension during reading requires fine-grained management of saccadic eye movements. A critical question, therefore, is how the brain controls eye movements in reading. Neural correlates of simple eye movements have been found in multiple cortical regions, but little is known about how this network operates in reading. To investigate this question in the present study, participants were presented with normal text, pseudo-word text, and consonant string text in a magnetic resonance imaging (MRI) scanner with eyetracking. Participants read naturally in the normal text condition and moved their eyes “as if they were reading” in the other conditions. Multi-voxel pattern analysis was used to analyze the fMRI signal in the oculomotor network. We found that activation patterns in a subset of network regions differentiated between stimulus types. These results suggest that the oculomotor network reflects more than simple saccade generation and are consistent with the hypothesis that specific network areas interface with cognitive systems. |
Kristin Koller; Christopher M. Hatton; Robert D. Rogers; Robert D. Rafal Stria terminalis microstructure in humans predicts variability in orienting towards threat Journal Article In: European Journal of Neuroscience, vol. 50, no. 11, pp. 3804–3813, 2019. @article{Koller2019, Current concepts of the extended amygdala posit that basolateral to central amygdala projections mediate fear-conditioned autonomic alerting, whereas projections to the bed nucleus of the stria terminalis mediate sustained anxiety. Using diffusion tensor imaging tractography in humans, we show that microstructure of the stria terminalis correlates with an orienting bias towards threat in a saccade decision task, providing the first evidence that this circuit supports decisions guiding evaluation of threatening stimuli. |
Benjamin T. Carter; Steven G. Luke In: Data in Brief, vol. 25, pp. 1–21, 2019. @article{Carter2019a, The data presented in this document was created to explore the effect of including or excluding word length, word frequency, the lexical predictability of function words and first pass reading time (or the duration of the first fixation on a word) as either baseline regressors or duration modulators on the final analysis for a fixation-related fMRI investigation of linguistic processing. The effect of these regressors was a central question raised during the review of Linguistic networks associated with lexical, semantic and syntactic predictability in reading: A fixation-related fMRI study [1]. Three datasets were created and compared to the original dataset to determine their effect. The first examines the effect of adding word length and word frequency as baseline regressors. The second examines the effect of removing first pass reading time as a duration modulator. The third examines the inclusion of function word predictability into the baseline hemodynamic response function. Statistical maps were created for each dataset and compared to the primary dataset (published in [1]) across the linguistic conditions of the initial dataset (lexical predictability, semantic predictability or syntax predictability). |
Justin Riddle; Kai Hwang; Dillan Cellier; Sofia Dhanani; Mark D'esposito Causal evidence for the role of neuronal oscillations in top–down and bottom–up attention Journal Article In: Journal of Cognitive Neuroscience, vol. 31, no. 5, pp. 768–779, 2019. @article{Riddle2019, Beta and gamma frequency neuronal oscillations have been implicated in top–down and bottom–up attention. In this study, we used rhythmic TMS to modulate ongoing beta and gamma frequency neuronal oscillations in frontal and parietal cortex while human participants performed a visual search task that manipulates bottom–up and top–down attention (single feature and conjunction search). Both task conditions will engage bottom–up attention processes, although the conjunction search condition will require more top–down attention. Gamma frequency TMS to superior precentral sulcus (sPCS) slowed saccadic RTs during both task conditions and induced a response bias to the contralateral visual field. In contrary, beta frequency TMS to sPCS and intraparietal sulcus decreased search accuracy only during the conjunction search condition that engaged more top–down attention. Furthermore, beta frequency TMS increased trial errors specifically when the target was in the ipsilateral visual field for the conjunction search condition. These results indicate that beta frequency TMS to sPCS and intraparietal sulcus disrupted top–down attention, whereas gamma frequency TMS to sPCS disrupted bottom–up, stimulus-driven attention processes. These findings provide causal evidence suggesting that beta and gamma oscillations have distinct functional roles for cognition. |
Philip A. Kragel; Marianne C. Reddan; Kevin S. LaBar; Tor D. Wager Emotion schemas are embedded in the human visual system Journal Article In: Science Advances, vol. 5, no. 7, pp. eaaw4358, 2019. @article{Kragel2019, Theorists have suggested that emotions are canonical responses to situations ancestrally linked to survival. If so, then emotions may be afforded by features of the sensory environment. However, few computational models describe how combinations of stimulus features evoke different emotions. Here, we develop a convolutional neural network that accurately decodes images into 11 distinct emotion categories. We validate the model using more than 25,000 images and movies and show that image content is sufficient to predict the category and valence of human emotion ratings. In two functional magnetic resonance imaging studies, we demonstrate that patterns of human visual cortex activity encode emotion category–related model output and can decode multiple categories of emotional experience. These results suggest that rich, category-specific visual features can be reliably mapped to distinct emotions, and they are coded in distributed representations within the human visual system. |
Milosz Krala; Bianca Kemenade; Benjamin Straube; Tilo Kircher; Frank Bremmer Predictive coding in a multisensory path integration task: An fMRI study Journal Article In: Journal of vision, vol. 19, no. 11, pp. 1–15, 2019. @article{Krala2019, During self-motion through an environment, our sensory systems are confronted with a constant flow of information from different modalities. To successfully navigate, self-induced sensory signals have to be dissociated from externally induced sensory signals. Previous studies have suggested that the processing of self-induced sensory information is modulated by means of predictive coding mechanisms. However, the neural correlates of processing self-induced sensory information from different modalities during self-motion are largely unknown. Here, we asked if and how the processing of visually simulated self-motion and/or associated auditory stimuli is modulated by self-controlled action. Participants were asked to actively reproduce a previously observed simulated self-displacement (path integration). Blood oxygen level-dependent (BOLD) activation during this path integration was compared with BOLD activation during a condition in which we passively replayed the exact sensory stimulus that had been produced by the participants in previous trials. We found supramodal BOLD suppression in parietal and frontal regions. Remarkably, BOLD contrast in sensory areas was enhanced in a modality-specific manner. We conclude that the effect of action on sensory processing is strictly dependent on the respective behavioral task and its relevance. |
Satwant Kumar; Ivo D. Popivanov; Rufin Vogels Transformation of visual representations across ventral stream body-selective patches Journal Article In: Cerebral Cortex, vol. 29, no. 1, pp. 215–229, 2019. @article{Kumar2019a, Although the neural processing of visual images of bodies is critical for survival, it is much less well understood than face processing. Functional imaging studies demonstrated body selective regions in primate inferior temporal cortex. To advance our understanding of how the visual brain represents bodies, we compared the representation of animate and inanimate objects in two such body patches with fMRI-guided single unit recordings in rhesus monkeys. We found that the middle Superior Temporal Sulcus body patch (MSB) distinguishes to a greater extent bodies from non-bodies than the anterior Superior Temporal Sulcus body patch (ASB). Importantly, ASB carried more viewpoint-tolerant information about body posture and body identity than MSB, while MSB showed greater orientation selectivity. Combined with previous work on faces, this suggests that an increase in view-tolerant representations, coupled with a refined individuation, along the visual hierarchy is a general property of information processing within the inferior temporal cortex. |
Hai Lin; Wei-ping Li; Synnöve Carlson A privileged working memory state and potential top-down modulation for faces, not scenes Journal Article In: Frontiers in Human Neuroscience, vol. 13, pp. 2, 2019. @article{Lin2019a, Top-down modulation is engaged during multiple stages of working memory (WM), including expectation, encoding, and maintenance. During WM maintenance period, an “incidental cue” can bring one of the two items into a privileged state and make the privileged item be recalled with higher precision, despite being irrelevant to which one to be probed as the target. With regard to the different representational states of WM, it's unclear whether there is top-down modulation on earth sensory cortical areas. Here, We used this behavioral paradigm of “incidental cue” and event-related fMRI to investigate whether there were a privileged WM state and top-down modulation for complex stimuli including faces and natural scenes. We found that faces, not scenes, could enter into the privileged state with improved accuracy and response time of WM task. Meanwhile, cue-driven baseline activity shifts in fusiform face area (FFA) were identified by univariate analysis in the recognition of privileged faces, compared to that of non-privileged ones. In addition, the functional connectivity between FFA and right inferior frontal junction (IFJ), middle frontal gyrus (MFG), inferior frontal gyrus, right intraparietal sulcus (IPS), right precuneus and supplementary motor area was significantly enhanced, corresponding to the improved WM performance. Moreover, FFA connectivity with IFJ and IPS could predict WM improvements. These findings indicated that privileged WM state and potential top-down modulation existed for faces, but not scenes, during WM maintenance period. |
Sahil Luthra; Sara Guediche; Sheila E. Blumstein; Emily B. Myers Neural substrates of subphonemic variation and lexical competition in spoken word recognition Journal Article In: Language, Cognition and Neuroscience, vol. 34, no. 2, pp. 151–169, 2019. @article{Luthra2019, In spoken word recognition, subphonemic variation influences lexical activation, with sounds near a category boundary increasing phonetic competition as well as lexical competition. The current study investigated the interplay of these factors using a visual world task in which participants were instructed to look at a picture of an auditory target (e.g. peacock). Eyetracking data indicated that participants were slowed when a voiced onset competitor (e.g. beaker) was also displayed, and this effect was amplified when acoustic-phonetic competition was increased. Simultaneously-collected fMRI data showed that several brain regions were sensitive to the presence of the onset competitor, including the supramarginal, middle temporal, and inferior frontal gyri, and functional connectivity analyses revealed that the coordinated activity of left frontal regions depends on both acoustic-phonetic and lexical factors. Taken together, results suggest a role for frontal brain structures in resolving lexical competition, particularly as atypical acoustic-phonetic information maps on to the lexicon. |
Charles R. Marshall; Christopher J. D. Hardy; Lucy L. Russell; Rebecca L. Bond; Harri Sivasathiaseelan; Caroline Greaves; Katrina M. Moore; Jennifer L. Agustus; Janneke E. P. Leeuwen; Stephen J. Wastling; Jonathan D. Rohrer; James M. Kilner; Jason D. Warren The functional neuroanatomy of emotion processing in frontotemporal dementias Journal Article In: Brain, vol. 142, no. 9, pp. 2873–2887, 2019. @article{Marshall2019, Impaired processing of emotional signals is a core feature of frontotemporal dementia syndromes, but the underlying neural mechanisms have proved challenging to characterize and measure. Progress in this field may depend on detecting functional changes in the working brain, and disentangling components of emotion processing that include sensory decoding, emotion categorization and emotional contagion. We addressed this using functional MRI of naturalistic, dynamic facial emotion processing with concurrent indices of autonomic arousal, in a cohort of patients representing all major frontotemporal dementia syndromes relative to healthy age-matched individuals. Seventeen patients with behavioural variant frontotemporal dementia [four female; mean (standard deviation) age 64.8 (6.8) years], 12 with semantic variant primary progressive aphasia [four female; 66.9 (7.0) years], nine with non-fluent variant primary progressive aphasia [five female; 67.4 (8.1) years] and 22 healthy controls [12 female; 68.6 (6.8) years] passively viewed videos of universal facial expressions during functional MRI acquisition, with simultaneous heart rate and pupillometric recordings; emotion identification accuracy was assessed in a post-scan behavioural task. Relative to healthy controls, patient groups showed significant impairments (analysis of variance models, all P 5 0.05) of facial emotion identification (all syndromes) and cardiac (all syndromes) and pupillary (non-fluent variant only) reactivity. Group-level functional neuroanatomical changes were assessed using statistical parametric mapping, thresholded at P 5 0.05 after correction for multiple comparisons over the whole brain or within pre-specified regions of interest. In response to viewing facial expressions, all participant groups showed comparable activation of primary visual cortex while patient groups showed differential hypo-activation of fusiform and posterior temporo-occipital junctional cortices. Bi-hemispheric, syndrome-specific activations predicting facial emotion identification performance were identified (behavioural variant, anterior insula and caudate; semantic variant, anterior temporal cortex; non-fluent variant, frontal operculum). The semantic and non-fluent variant groups additionally showed complex profiles of central parasympathetic and sympathetic autonomic involvement that overlapped signatures of emotional visual and categorization processing and extended (in the non-fluent group) to brainstem effector pathways. These findings open a window on the functional cerebral mechanisms underpinning complex socio-emotional phenotypes of frontotemporal dementia, with implications for novel physiological biomarker development. |
Abhijit Rajan; Sreenivasan Meyyappan; Harrison Walker; Immanuel Babu; Henry Samuel; Zhenhong Hu; Mingzhou Ding Neural mechanisms of internal distraction suppression in visual attention Journal Article In: Cortex, vol. 117, pp. 77–88, 2019. @article{Rajan2019, When performing a demanding cognitive task, internal distraction in the form of task-irrelevant thoughts and mind wandering can shift our attention away from the task, negatively affecting task performance. Behaviorally, individuals with higher executive function indexed by higher working memory capacity (WMC) exhibit less mind wandering during cognitive tasks, but the underlying neural mechanisms are unknown. To address this problem, we recorded functional magnetic resonance imaging (fMRI) data from subjects performing a cued visual attention task, and assessed their WMC in a separate experiment. Applying machine learning and time-series analysis techniques, we showed that (1) higher WMC individuals experienced lower internal distraction through stronger suppression of posterior cingulate cortex (PCC) activity, (2) higher WMC individuals had better neural representations of attended information as evidenced by higher multivoxel decoding accuracy of cue-related activities in the dorsal attention network (DAN), (3) the positive relationship between WMC and DAN decoding accuracy was mediated by suppression of PCC activity, (4) the dorsal anterior cingulate (dACC) was a source of top-down signals that regulate PCC activity as evidenced by the negative association between Granger-causal influence dACC/PCC and PCC activity levels, and (5) higher WMC individuals exhibiting stronger dACC/PCC Granger-causal influence. These results shed light on the neural mechanisms underlying the executive suppression of internal distraction in tasks requiring externally oriented attention and provide an explanation of the individual differences in such suppression. |
Birgit Rauchbauer; Bruno Nazarian; Morgane Bourhis; Magalie Ochs; Laurent Prévot; Thierry Chaminade Brain activity during reciprocal social interaction investigated using conversational robots as control condition Journal Article In: Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 374, pp. 1–8, 2019. @article{Rauchbauer2019, We present a novel functional magnetic resonance imaging paradigm for second-person neuroscience. The paradigm compares a human social interaction (human-human interaction, HHI) to an interaction with a conversational robot (human-robot interaction, HRI). The social interaction consists of 1 min blocks of live bidirectional discussion between the scanned participant and the human or robot agent. A final sample of 21 participants is included in the corpus comprising physiological (blood oxygen level-dependent, respiration and peripheral blood flow) and behavioural (recorded speech from all interlocutors, eye tracking from the scanned participant, face recording of the human and robot agents) data. Here, we present the first analysis of this corpus, contrasting neural activity between HHI and HRI. We hypothesized that independently of differences in behaviour between interactions with the human and robot agent, neural markers of mentalizing (temporoparietal junction (TPJ) and medial prefrontal cortex) and social motivation (hypothalamus and amygdala) would only be active in HHI. Results confirmed significantly increased response associated with HHI in the TPJ, hypothalamus and amygdala, but not in the medial prefrontal cortex. Future analysis of this corpus will include fine-grained characterization of verbal and non-verbal behaviours recorded during the interaction to investigate their neural correlates. |
Ryan V. Raut; Anish Mitra; Abraham Z. Snyder; Marcus E. Raichle On time delay estimation and sampling error in resting-state fMRI Journal Article In: NeuroImage, vol. 194, pp. 211–227, 2019. @article{Raut2019, Accumulating evidence indicates that resting-state functional magnetic resonance imaging (rsfMRI) signals correspond to propagating electrophysiological infra-slow activity (<0.1 Hz). Thus, pairwise correlations (zero-lag functional connectivity (FC)) and temporal delays among regional rsfMRI signals provide useful, complementary descriptions of spatiotemporal structure in infra-slow activity. However, the slow nature of fMRI signals implies that practical scan durations cannot provide sufficient independent temporal samples to stabilize either of these measures. Here, we examine factors affecting sampling variability in both time delay estimation (TDE) and FC. Although both TDE and FC accuracy are highly sensitive to data quantity, we use surrogate fMRI time series to study how the former is additionally related to the magnitude of a given pairwise correlation and, to a lesser extent, the temporal sampling rate. These contingencies are further explored in real data comprising 30-min rsfMRI scans, where sampling error (i.e., limited accuracy owing to insufficient data quantity) emerges as a significant but underappreciated challenge to FC and, even more so, to TDE. Exclusion of high-motion epochs exacerbates sampling error; thus, both sides of the bias-variance (or data quality-quantity) tradeoff associated with data exclusion should be considered when analyzing rsfMRI data. Finally, we present strategies for TDE in motion-corrupted data, for characterizing sampling error in TDE and FC, and for mitigating the influence of sampling error on lag-based analyses. |
Christiane S. Rohr; Dennis Dimond; Manuela Schuetze; Ivy Y. K. Cho; Limor Lichtenstein-Vidne; Hadas Okon-Singer; Deborah Dewey; Signe Bray Girls' attentive traits associate with cerebellar to dorsal attention and default mode network connectivity Journal Article In: Neuropsychologia, vol. 127, pp. 84–92, 2019. @article{Rohr2019, Attention traits are a cornerstone to the healthy development of children's performance in the classroom, their interactions with peers, and in predicting future success and problems. The cerebellum is increasingly appreciated as a region involved in complex cognition and behavior, and moreover makes important connections to key brain networks known to support attention: the dorsal attention and default mode networks (DAN; DMN). The cerebellum has also been implicated in childhood disorders affecting attention, namely autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), suggesting that attention networks extending to the cerebellum may be important to consider in relation to attentive traits. Yet, direct investigations into the association between cerebellar FC and attentive traits are lacking. Therefore, in this study we examined attentive traits, assessed using parent reports of ADHD and ASD symptoms, in a community sample of 52 girls aged 4–7 years, i.e. around the time of school entry, and their association with cerebellar connections with the DAN and DMN. We found that cortico-cerebellar functional connectivity (FC) jointly and differentially correlated with attentive traits, through a combination of weaker and stronger FC across anterior and posterior DAN and DMN nodes. These findings suggest that cortico-cerebellar integration may play an important role in the manifestation of attentive traits. |
Pia Schröder; Timo Torsten Schmidt; Felix Blankenburg Neural basis of somatosensory target detection independent of uncertainty, relevance, and reports Journal Article In: eLife, vol. 8, pp. 1–19, 2019. @article{Schroeder2019, Research on somatosensory awareness has yielded highly diverse findings with putative neural correlates ranging from activity within somatosensory cortex to activation of widely distributed frontoparietal networks. Divergent results from previous studies may reside in cognitive processes that often coincide with stimulus awareness in experimental settings. To scrutinise the specific relevance of regions implied in the target detection network, we used functional magnetic resonance imaging (n = 27) on a novel somatosensory detection task that explicitly controls for stimulus uncertainty, behavioural relevance, overt reports, and motor responses. Using Bayesian Model Selection, we show that responses reflecting target detection are restricted to secondary somatosensory cortex, whereas activity in insular, cingulate, and motor regions is best explained in terms of stimulus uncertainty and overt reports. Our results emphasise the role of sensory-specific cortex for the emergence of perceptual awareness and dissect the contribution of the frontoparietal network to classical detection tasks. |
Sarah E. Schwettmann; Joshua B. Tenenbaum; Nancy Kanwisher Invariant representations of mass in the human brain Journal Article In: eLife, vol. 8, pp. 1–26, 2019. @article{Schwettmann2019, An intuitive understanding of physical objects and events is critical for successfully interacting with the world. Does the brain achieve this understanding by running simulations in a mental physics engine, which represents variables such as force and mass, or by analyzing patterns of motion without encoding underlying physical quantities? To investigate, we scanned participants with fMRI while they viewed videos of objects interacting in scenarios indicating their mass. Decoding analyses in brain regions previously implicated in intuitive physical inference revealed mass representations that generalized across variations in scenario, material, friction, and motion energy. These invariant representations were found during tasks without action planning, and tasks focusing on an orthogonal dimension (object color). Our results support an account of physical reasoning where abstract physical variables serve as inputs to a forward model of dynamics, akin to a physics engine, in parietal and frontal cortex. |
Michael J. Spilka; Daniel J. Pittman; Signe L. Bray; Vina M. Goghari Manipulating visual scanpaths during facial emotion perception modulates functional brain activation in schizophrenia patients and controls Journal Article In: Journal of Abnormal Psychology, vol. 128, no. 8, pp. 855–866, 2019. @article{Spilka2019, Individuals with schizophrenia exhibit deficits in facial emotion processing, which have been associated with abnormalities in visual gaze behavior and functional brain activation. However, the relationship between gaze behavior and brain activation in schizophrenia remains unexamined. Studies in healthy individuals and other clinical samples indicate a relationship between gaze behavior and functional activation in brain regions implicated in facial emotion processing deficits in schizophrenia (e.g., fusiform gyrus), prompting the question of whether a similar relationship exists in schizophrenia. This study examined whether manipulating visual scanpaths during facial emotion perception would modulate functional brain activation in a sample of 23 schizophrenia patients and 26 community controls. Participants underwent functional magnetic resonance imaging (MRI) while viewing pictures of emotional faces. During the typical viewing condition, a fixation cue directed participants' gaze primarily to the eyes and mouth, whereas during the atypical viewing condition gaze was directed to peripheral features. Both viewing conditions elicited a robust response throughout face-processing regions. Typical viewing led to greater activation in visual association cortex including the right inferior occipital gyrus/occipital face area, whereas atypical viewing elicited greater activation in primary visual cortex and regions involved in attentional control. There were no between-groups activation differences in response to faces or interaction between group and gaze manipulation. The results indicate that gaze behavior modulates functional activation in early face-processing regions in individuals with and without schizophrenia, suggesting that abnormal gaze behavior in schizophrenia may contribute to activation abnormalities during facial emotion perception. |
Gabor Stefanics; Klaas Enno Stephan; Jakob Heinzle Feature-specific prediction errors for visual mismatch Journal Article In: NeuroImage, vol. 196, pp. 142–151, 2019. @article{Stefanics2019, Predictive coding (PC) theory posits that our brain employs a predictive model of the environment to infer the causes of its sensory inputs. A fundamental but untested prediction of this theory is that the same stimulus should elicit distinct precision weighted prediction errors (pwPEs) when different (feature-specific) predictions are violated, even in the absence of attention. Here, we tested this hypothesis using functional magnetic resonance imaging (fMRI) and a multi-feature roving visual mismatch paradigm where rare changes in either color (red, green), or emotional expression (happy, fearful) of faces elicited pwPE responses in human participants. Using a computational model of learning and inference, we simulated pwPE and prediction trajectories of a Bayes-optimal observer and used these to analyze changes in blood oxygen level dependent (BOLD) responses to changes in color and emotional expression of faces while participants engaged in a distractor task. Controlling for visual attention by eye-tracking, we found pwPE responses to unexpected color changes in the fusiform gyrus. Conversely, unexpected changes of facial emotions elicited pwPE responses in cortico-thalamo-cerebellar structures associated with emotion and theory of mind processing. Predictions pertaining to emotions activated fusiform, occipital and temporal areas. Our results are consistent with a general role of PC across perception, from low-level to complex and socially relevant object features, and suggest that monitoring of the social environment occurs continuously and automatically, even in the absence of attention. |
Abdurahman S. Elkhetali; Leland L. Fleming; Ryan J. Vaden; Rodolphe Nenert; Jane E. Mendle; Kristina M. Visscher Background connectivity between frontal and sensory cortex depends on task state, independent of stimulus modality Journal Article In: NeuroImage, vol. 184, pp. 790–800, 2019. @article{Elkhetali2019, The human brain has the ability to process identical information differently depending on the task. In order to perform a given task, the brain must select and react to the appropriate stimuli while ignoring other irrelevant stimuli. The dynamic nature of environmental stimuli and behavioral intentions requires an equally dynamic set of responses within the brain. Collectively, these responses act to set up and maintain states needed to perform a given task. However, the mechanisms that allow for setting up and maintaining a task state are not fully understood. Prior evidence suggests that one possible mechanism for maintaining a task state may be through altering 'background connectivity,' connectivity that exists independently of the trials of a task. Although previous studies have suggested that background connectivity contributes to a task state, these studies have typically not controlled for stimulus characteristics, or have focused primarily on relationships among areas involved with visual sensory processing. In the present study we examined background connectivity during tasks involving both visual and auditory stimuli. We examined the connectivity profiles of both visual and auditory sensory cortex that allow for selection of task-relevant stimuli, demonstrating the existence of a potentially universal pattern of background connectivity underlying attention to a stimulus. Participants were presented with simultaneous auditory and visual stimuli and were instructed to respond to only one, while ignoring the other. Using functional MRI, we observed task-based modulation of the background connectivity profile for both the auditory and visual cortex to certain brain regions. There was an increase in background connectivity between the task-relevant sensory cortex and control areas in the frontal cortex. This increase in synchrony when receiving the task-relevant stimulus as compared to the task irrelevant stimulus may be maintaining paths for passing information within the cortex. These task-based modulations of connectivity occur independently of stimuli and could be one way the brain sets up and maintains a task state. |
Magdalena Fafrowicz; Bartosz Bohaterewicz; Anna Ceglarek; Monika Cichocka; Koryna Lewandowska; Barbara Sikora-Wachowicz; Halszka Oginska; Anna Beres; Justyna Olszewska; Tadeusz Marek Beyond the low frequency fluctuations: Morning and evening differences in human brain Journal Article In: Frontiers in Human Neuroscience, vol. 13, pp. 288, 2019. @article{Fafrowicz2019, Human performance, alertness, and most biological functions express rhythmic fluctuations across a 24-h-period. This phenomenon is believed to originate from differences in both circadian and homeostatic sleep-wake regulatory processes. Interactions between these processes result in time-of-day modulations of behavioral performance as well as brain activity patterns. Although the basic mechanism of the 24-h clock is conserved across evolution, there are interindividual differences in the timing of sleep-wake cycles, subjective alertness and functioning throughout the day. The study of circadian typology differences has increased during the last few years, especially research on extreme chronotypes, which provide a unique way to investigate the effects of sleep-wake regulation on cerebral mechanisms. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on resting-state functional connectivity. Twenty-nine extreme morning- and 34 evening-type participants underwent two fMRI sessions: about 1 h after wake-up time (morning) and about 10 h after wake-up time (evening), scheduled according to their declared habitual sleep-wake pattern on a regular working day. Analysis of obtained neuroimaging data disclosed only an effect of time of day on resting-state functional connectivity; there were different patterns of functional connectivity between morning (MS) and evening (ES) sessions. The results of our study showed no differences between extreme morning-type and evening-type individuals. We demonstrate that circadian and homeostatic influences on the resting-state functional connectivity have a universal character, unaffected by circadian typology. |
Jesse Gomez; Alexis Drain; Brianna Jeska; Vaidehi S. Natu; Michael Barnett; Kalanit Grill-Spector Development of population receptive fields in the lateral visual stream improves spatial coding amid stable structural-functional coupling Journal Article In: NeuroImage, vol. 188, pp. 59–69, 2019. @article{Gomez2019, Human visual cortex encompasses more than a dozen visual field maps across three major processing streams. One of these streams is the lateral visual stream, which extends from V1 to lateral-occipital (LO) and temporal-occipital (TO) visual field maps and plays a prominent role in shape as well as motion perception. However, it is unknown if and how population receptive fields (pRFs) in the lateral visual stream develop from childhood to adulthood, and what impact this development may have on spatial coding. Here, we used functional magnetic resonance imaging and pRF modeling in school-age children and adults to investigate the development of the lateral visual stream. Our data reveal four main findings: 1) The topographic organization of eccentricity and polar angle maps of the lateral stream is stable after age five. 2) In both age groups there is a reliable relationship between eccentricity map transitions and cortical folding: the middle occipital gyrus predicts the transition between the peripheral representation of LO and TO maps. 3) pRFs in LO and TO maps undergo differential development from childhood to adulthood, resulting in increasing coverage of the central visual field in LO and of the peripheral visual field in TO. 4) Model-based decoding shows that the consequence of pRF and visual field coverage development is improved spatial decoding from LO and TO distributed responses in adults vs. children. Together, these results explicate both the development and topography of the lateral visual stream. Our data show that the general structural-functional organization is laid out early in development, but fine-scale properties, such as pRF distribution across the visual field and consequently, spatial precision, become fine-tuned across childhood development. These findings advance understanding of the development of the human visual system from childhood to adulthood and provide an essential foundation for understanding developmental deficits. |
Joseph C. Griffis; Nicholas V. Metcalf; Maurizio Corbetta; Gordon L. Shulman Structural disconnections explain brain network dysfunction after stroke Journal Article In: Cell Reports, vol. 28, no. 10, pp. 2527–2540, 2019. @article{Griffis2019, Stroke causes focal brain lesions that disrupt functional connectivity (FC), a measure of activity synchronization, throughout distributed brain networks. It is often assumed that FC disruptions reflect damage to specific cortical regions. However, an alternative explanation is that they reflect the structural disconnection (SDC) of white matter pathways. Here, we compare these explanations using data from 114 stroke patients. Across multiple analyses, we find that SDC measures outperform focal damage measures, including damage to putative critical cortical regions, for explaining FC disruptions associated with stroke. We also identify a core mode of structure-function covariation that links the severity of interhemispheric SDCs to widespread FC disruptions across patients and that correlates with deficits in multiple behavioral domains. We conclude that a lesion's impact on the structural connectome is what determines its impact on FC and that interhemispheric SDCs may play a particularly important role in mediating FC disruptions after stroke. |
Christoph Helmchen; Matthias Rother; Andreas Sprenger Increased brain responsivity to galvanic vestibular stimulation in bilateral vestibular failure Journal Article In: NeuroImage: Clinical, vol. 24, pp. 101942, 2019. @article{Helmchen2019, In this event-related functional magnetic resonance imaging (fMRI) study we investigated how the brain of patients with bilateral vestibular failure (BVF) responds to vestibular stimuli. We used imperceptible noisy galvanic vestibular stimulation (GVS) and perceptible bi-mastoidal GVS intensities and related the corresponding brain activity to the evoked motion perception. In contrast to caloric irrigation, GVS stimulates the vestibular organ at its potentially intact afferent nerve site. Motion perception thresholds and cortical responses were compared between 26 BVF patients to 27 age-matched healthy control participants. To identify the specificity of vestibular cortical responses we used a parametric design with different stimulus intensities (noisy imperceptible, low perceptible, high perceptible) allowing region-specific stimulus response functions. In a 2 × 3 flexible factorial design all GVS-related brain activities were contrasted with a sham condition that did not evoke perceived motion. Patients had a higher motion perception threshold and rated the vestibular stimuli higher than the healthy participants. There was a stimulus intensity related and region-specific increase of activity with steep stimulus response functions in parietal operculum (e.g. OP2), insula, superior temporal gyrus, early visual cortices (V3) and cerebellum while activity in the hippocampus and intraparietal sulcus did not correlate with vestibular stimulus intensity. Using whole brain analysis, group comparisons revealed increased brain activity in early visual cortices (V3) and superior temporal gyrus of patients but there was no significant interaction, i.e. stimulus response function in these regions were still similar in both groups. Brain activity in these regions during (high)GVS increased with higher dizziness-related handicap scores but was not related to the degree of vestibular impairment or disease duration. nGVS did not evoke cortical responses in any group. Our data indicate that perceptible GVS-related cortical responsivity is not diminished but increased in mul-tisensory (visual-vestibular) cortical regions despite bilateral failure of the peripheral vestibular organ. The increased activity in early visual cortices (V3) and superior temporal gyrus of BVF patients has several potential implications: (i) their cortical reciprocal inhibitory visuo-vestibular interaction is dysfunctional, (ii) it may contribute to the visual dependency of BVF patients, and (iii) it needs to be considered when BVF patients receive peripheral vestibular stimulation devices, e.g. vestibular implants or portable GVS devices. Imperceptible nGVS did not elicit cortical brain responses making it unlikely that the reported balance improvement of BVF by nGVS is mediated by cortical mechanisms. |
Linda Henriksson; Marieke Mur; Nikolaus Kriegeskorte Rapid invariant encoding of scene layout in human OPA Journal Article In: Neuron, vol. 103, no. 1, pp. 161–171.e3, 2019. @article{Henriksson2019, Successful visual navigation requires a sense of the geometry of the local environment. How do our brains extract this information from retinal images? Here we visually presented scenes with all possible combinations of five scene-bounding elements (left, right, and back walls; ceiling; floor) to human subjects during functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). The fMRI response patterns in the scene-responsive occipital place area (OPA) reflected scene layout with invariance to changes in surface texture. This result contrasted sharply with the primary visual cortex (V1), which reflected low-level image features of the stimuli, and the parahippocampal place area (PPA), which showed better texture than layout decoding. MEG indicated that the texture-invariant scene layout representation is computed from visual input within ∼100 ms, suggesting a rapid computational mechanism. Taken together, these results suggest that the cortical representation underlying our instant sense of the environmental geometry is located in the OPA. |
Anna E. Hughes; John A. Greenwood; Nonie J. Finlayson; D. Samuel Schwarzkopf Population receptive field estimates for motion-defined stimuli Journal Article In: NeuroImage, vol. 199, pp. 245–260, 2019. @article{Hughes2019, The processing of motion changes throughout the visual hierarchy, from spatially restricted ‘local motion' in early visual cortex to more complex large-field ‘global motion' at later stages. Here we used functional magnetic resonance imaging (fMRI) to examine spatially selective responses in these areas related to the processing of random-dot stimuli defined by differences in motion. We used population receptive field (pRF) analyses to map retinotopic cortex using bar stimuli comprising coherently moving dots. In the first experiment, we used three separate background conditions: no background dots (dot-defined bar-only), dots moving coherently in the opposite direction to the bar (kinetic boundary) and dots moving incoherently in random directions (global motion). Clear retinotopic maps were obtained for the bar-only and kinetic-boundary conditions across visual areas V1–V3 and in higher dorsal areas. For the global-motion condition, retinotopic maps were much weaker in early areas and became clear only in higher areas, consistent with the emergence of global-motion processing throughout the visual hierarchy. However, in a second experiment we demonstrate that this pattern is not specific to motion-defined stimuli, with very similar results for a transparent-motion stimulus and a bar defined by a static low-level property (dot size) that should have driven responses particularly in V1. We further exclude explanations based on stimulus visibility by demonstrating that the observed differences in pRF properties do not follow the ability of observers to localise or attend to these bar elements. Rather, our findings indicate that dorsal extrastriate retinotopic maps may primarily be determined by the visibility of the neural responses to the bar relative to the background response (i.e. neural signal-to-noise ratios) and suggests that claims about stimulus selectivity from pRF experiments must be interpreted with caution. |
Andreas Jarvstad; Iain D. Gilchrist Cognitive control of saccadic selection and inhibition from within the core cortical saccadic network Journal Article In: Journal of Neuroscience, vol. 39, no. 13, pp. 2497–2508, 2019. @article{Jarvstad2019, The ability to select the task-relevant stimulus for a saccadic eye movement, while inhibiting saccades to task-irrelevant stimuli, is crucial for active vision. Here, we present a novel saccade-contingent behavioral paradigm and investigate the neural basis of the central cognitive functions underpinning such behavior, saccade selection, saccade inhibition, and saccadic choice, in female and male human participants. The paradigm allows for exceptionally well-matched contrasts, with task demands formalized with stochastic accumulation-to-threshold models. Using fMRI, we replicated the core cortical eye-movement network for saccade generation (frontal eye fields, posterior parietal cortex, and higher-level visual areas). However, in contrast to previously published tasks, saccadic selection and inhibition recruited only this core network. Brain-behavior analyses further showed that inhibition efficiency may be underpinned by white-matter integrity of tracts between key saccade-generating regions, and that inhibition efficiency is associated with right inferior frontal gyrus engagement, potentially implementing general-purpose inhibition. The core network, however, was insufficient for saccadic choice, which recruited anterior regions commonly attributed to saccadic action selection, including dorsolateral prefrontal cortex and anterior cingulate cortex. Jointly, the results indicate that extra-saccadic activity observed for free choice, and in previously published tasks probing saccadic control, is likely due to increased load on higher-level cognitive processes, and not saccadic selection per se, which is achieved within the canonical cortical eye movement network. |
Raphael Vallat; David Meunier; Alain Nicolas; Perrine Ruby Hard to wake up? The cerebral correlates of sleep inertia assessed using combined behavioral, EEG and fMRI measures Journal Article In: NeuroImage, vol. 184, pp. 266–278, 2019. @article{Vallat2019, The first minutes following awakening from sleep are typically marked by reduced vigilance, increased sleepiness and impaired performance, a state referred to as sleep inertia. Although the behavioral aspects of sleep inertia are well documented, its cerebral correlates remain poorly understood. The present study aimed at filling this gap by measuring in 34 participants the changes in behavioral performance (descending subtraction task, DST), EEG spectral power, and resting-state fMRI functional connectivity across three time points: before an early-afternoon 45-min nap, 5 min after awakening from the nap and 25 min after awakening. Our results showed impaired performance at the DST at awakening and an intrusion of sleep-specific features (spectral power and functional connectivity) into wakefulness brain activity, the intensity of which was dependent on the prior sleep duration and depth for the functional connectivity (14 participants awakened from N2 sleep, 20 from N3 sleep). Awakening in N3 (deep) sleep induced the most robust changes and was characterized by a global loss of brain functional segregation between task-positive (dorsal attention, salience, sensorimotor) and task-negative (default mode) networks. Significant correlations were observed notably between the EEG delta power and the functional connectivity between the default and dorsal attention networks, as well as between the percentage of mistake at the DST and the default network functional connectivity. These results highlight (1) significant correlations between EEG and fMRI functional connectivity measures, (2) significant correlations between the behavioral aspect of sleep inertia and measures of the cerebral functioning at awakening (both EEG and fMRI), and (3) the important difference in the cerebral underpinnings of sleep inertia at awakening from N2 and N3 sleep. |