EyeLink fMRI / MEG Publications
All EyeLink fMRI and MEG research publications (with concurrent eye tracking) up until 2024 (with some early 2025s) are listed below by year. You can search the publications using keywords such as Visual Cortex, Neural Plasticity, MEG, etc. You can also search for individual author names. If we missed any EyeLink fMRI or MEG articles, please email us!
2018 |
Johannes Rennig; Michael S. Beauchamp Free viewing of talking faces reveals mouth and eye preferring regions of the human superior temporal sulcus Journal Article In: NeuroImage, vol. 183, pp. 25–36, 2018. @article{Rennig2018, During face-to-face communication, the mouth of the talker is informative about speech content, while the eyes of the talker convey other information, such as gaze location. Viewers most often fixate either the mouth or the eyes of the talker's face, presumably allowing them to sample these different sources of information. To study the neural correlates of this process, healthy humans freely viewed talking faces while brain activity was measured with BOLD fMRI and eye movements were recorded with a video-based eye tracker. Post hoc trial sorting was used to divide the data into trials in which participants fixated the mouth of the talker and trials in which they fixated the eyes. Although the audiovisual stimulus was identical, the two trials types evoked differing responses in subregions of the posterior superior temporal sulcus (pSTS). The anterior pSTS preferred trials in which participants fixated the mouth of the talker while the posterior pSTS preferred fixations on the eye of the talker. A second fMRI experiment demonstrated that anterior pSTS responded more strongly to auditory and audiovisual speech than posterior pSTS eye-preferring regions. These results provide evidence for functional specialization within the pSTS under more realistic viewing and stimulus conditions than in previous neuroimaging studies. |
Maya L. Rosen; Chantal E. Stern; Kathryn J. Devaney; David C. Somers Cortical and subcortical contributions to long-term memory-guided visuospatial attention Journal Article In: Cerebral Cortex, vol. 28, no. 8, pp. 2935–2947, 2018. @article{Rosen2018, Long-term memory (LTM) helps to efficiently direct and deploy the scarce resources of the attentional system; however, the neural substrates that support LTM-guidance of visual attention are not well understood. Here, we present results from fMRI experiments that demonstrate that cortical and subcortical regions of a network defined by resting-state functional connectivity are selectively recruited for LTM-guided attention, relative to a similarly demanding stimulus-guided attention paradigm that lacks memory retrieval and relative to a memory retrieval paradigm that lacks covert deployment of attention. Memory-guided visuospatial attention recruited posterior callosal sulcus, posterior precuneus, and lateral intraparietal sulcus bilaterally. Additionally, 3 subcortical regions defined by intrinsic functional connectivity were recruited: the caudate head, mediodorsal thalamus, and cerebellar lobule VI/Crus I. Although the broad resting-state network to which these nodes belong has been referred to as a cognitive control network, the posterior cortical regions activated in the present study are not typically identified with supporting standard cognitive control tasks. We propose that these regions form a Memory-Attention Network that is recruited for processes that integrate mnemonic and stimulus-based representations to guide attention. These findings may have important implications for understanding the mechanisms by which memory retrieval influences attentional deployment. |
Ricky R. Savjani; Sucharit Katyal; Elizabeth Halfen; Jung Hwan Kim; David Ress Polar-angle representation of saccadic eye movements in human superior colliculus Journal Article In: NeuroImage, vol. 171, pp. 199–208, 2018. @article{Savjani2018, The superior colliculus (SC) is a layered midbrain structure involved in directing both head and eye movements and coordinating visual attention. Although a retinotopic organization for the mediation of saccadic eye-movements has been shown in monkey SC, in human SC the topography of saccades has not been confirmed. Here, a novel experimental paradigm was performed by five participants (one female) while high-resolution (1.2-mm) functional magnetic resonance imaging was used to measure activity evoked by saccadic eye movements within human SC. Results provide three critical observations about the topography of the SC: (1) saccades along the superior-inferior visual axis are mapped across the medial-lateral anatomy of the SC; (2) the saccadic eye-movement representation is in register with the retinotopic organization of visual stimulation; and (3) activity evoked by saccades occurs deeper within SC than that evoked by visual stimulation. These approaches lay the foundation for studying the organization of human subcortical – and enhanced cortical mapping – of eye-movement mechanisms. |
Max Schneider; Laura Leuchs; Michael Czisch; Philipp G. Sämann; Victor I. Spoormaker Disentangling reward anticipation with simultaneous pupillometry / fMRI Journal Article In: NeuroImage, vol. 178, pp. 11–22, 2018. @article{Schneider2018, The reward system may provide an interesting intermediate phenotype for anhedonia in affective disorders. Reward anticipation is characterized by an increase in arousal, and previous studies have linked the anterior cingulate cortex (ACC) to arousal responses such as dilation of the pupil. Here, we examined pupil dynamics during a reward anticipation task in forty-six healthy human subjects and evaluated its neural correlates using functional magnetic resonance imaging (fMRI). Pupil size showed a strong increase during monetary reward anticipation, a moderate increase during verbal reward anticipation and a decrease during control trials. For fMRI analyses, average pupil size and pupil change were computed in 1-s time bins during the anticipation phase. Activity in the ventral striatum was inversely related to the pupil size time course, indicating an early onset of activation and a role in reward prediction processing. Pupil dilations were linked to increased activity in the salience network (dorsal ACC and bilateral insula), which likely triggers an increase in arousal to enhance task performance. Finally, increased pupil size preceding the required motor response was associated with activity in the ventral attention network. In sum, pupillometry provides an effective tool for disentangling different phases of reward anticipation, with relevance for affective symptomatology. |
Oleg Solopchuk; Moustapha Sebti; Céline Bouvy; Charles-Etienne Benoit; Thibault Warlop; Anne Jeanjean; Alexandre Zénon Locus Coeruleus atrophy doesn't relate to fatigue in Parkinson's disease Journal Article In: Scientific Reports, vol. 8, pp. 12381, 2018. @article{Solopchuk2018, Fatigue is a frequent complaint among healthy population and one of the earliest and most debilitating symptoms in Parkinson's disease (PD). Earlier studies have examined the role of dopamine and serotonin in pathogenesis of fatigue, but the plausible role of noradrenalin (NA) remains underexplored. We investigated the relationship between fatigue in Parkinsonian patients and the extent of degeneration of Locus Coeruleus (LC), the main source of NA in the brain. We quantified LC and Substantia Nigra (SN) atrophy using neuromelanin-sensitive imaging, analyzed with a novel, fully automated algorithm. We also assessed patients' fatigue, depression, sleep disturbance and vigilance. We found that LC degeneration correlated with the levels of depression and vigilance but not with fatigue, while fatigue correlated weakly with atrophy of SN. These results indicate that LC degeneration in Parkinson's disease is unlikely to cause fatigue, but may be involved in mood and vigilance alterations. |
Chen Song; Geraint Rees Intra-hemispheric integration underlies perception of tilt illusion Journal Article In: NeuroImage, vol. 175, pp. 80–90, 2018. @article{Song2018, The integration of inputs across the entire visual field into a single conscious experience is fundamental to human visual perception. This integrated nature of visual experience is illustrated by contextual illusions such as the tilt illusion, in which the perceived orientation of a central grating appears tilted away from its physical orientation, due to the modulation by a surrounding grating with a different orientation. Here we investigated the relative contribution of local, intra-hemispheric and global, inter-hemispheric integration mechanisms to perception of the tilt illusion. We used Dynamic Causal Modelling of fMRI signals to estimate effective connectivity in human early visual cortices (V1, V2, V3) during bilateral presentation of a tilt illusion stimulus. Our analysis revealed that neural responses associated with the tilt illusion were modulated by intra- rather than inter-hemispheric connectivity. Crucially, across participants, intra-hemispheric connectivity in V1 correlated with the magnitude of the tilt illusion, while no such correlation was observed for V1 inter-hemispheric connectivity, or V2, V3 connectivity. Moreover, when the illusion stimulus was presented unilaterally rather than bilaterally, the illusion magnitude did not change. Together our findings suggest that perception of the tilt illusion reflects an intra-hemispheric integration mechanism. This is in contrast to the existing literature, which suggests inter-hemispheric modulation of neural activity as early as V1. This discrepancy with our findings may reflect the diversity and complexity of integration mechanisms involved in visual processing and visual perception. |
Teresa Sousa; Alexandre Sayal; João V. Duarte; Gabriel N. Costa; Ricardo Martins; Miguel Castelo-Branco Evidence for distinct levels of neural adaptation to both coherent and incoherently moving visual surfaces in visual area hMT+ Journal Article In: NeuroImage, vol. 179, pp. 540–547, 2018. @article{Sousa2018, Visual adaptation describes the processes by which the visual system alters its operating properties in response to changes in the environment. It is one of the mechanisms controlling visual perceptual bistability – when two perceptual solutions are available – by controlling the duration of each percept. Moving plaids are an example of such ambiguity. They can be perceived as two surfaces sliding incoherently over each other or as a single coherent surface. Here, we investigated, using fMRI, whether activity in the human motion complex (hMT+), a region tightly related to the perceptual integration of visual motion, is modulated by distinct forms of visual adaptation to coherent or incoherent perception of moving plaids. Our hypothesis is that exposure to global coherent or incoherent moving stimuli leads to different levels of measurable adaptation, reflected in hMT+ activity. We found that the strength of the measured visual adaptation effect depended on whether subjects integrated (coherent percept) or segregated (incoherent percept) surface motion signals. Visual motion adaptation was significant both for coherent motion and globally incoherent surface motion. Although not as strong as to the coherent percept, visual adaptation due to the incoherent percept also affects hMT+. This shows that adaptation can contribute to regulate percept duration during visual bistability, with distinct weights, depending on the type of percept. Our findings suggest a link between bistability and adaptation mechanisms, both due to coherent and incoherent motion percepts, but in an asymmetric manner. These asymmetric adaptation weights have strong implications in models of perceptual decision and may explain asymmetry of perceptual interpretation periods. |
Maria Steffens; C. Neumann; Anna-Maria Kasparbauer; B. Becker; Bernd Weber; Mitul A. Mehta; R. Hurlemann; Ulrich Ettinger Effects of ketamine on brain function during response inhibition Journal Article In: Psychopharmacology, vol. 235, no. 12, pp. 3559–3571, 2018. @article{Steffens2018, Introduction The uncompetitive N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist ketamine has been proposed to model symptoms ofpsychosis. Inhibitory deficits in the schizophrenia spectrumhave been reliably reported using the antisaccade task. Interestingly, although similar antisaccade deficits have been reported following ketamine in non-human primates, ketamine-induced deficits have not been observed in healthy human volunteers. Methods To investigate the effects of ketamine on brain function during an antisaccade task, we conducted a double-blind, placebo-controlled, within-subjects study on n = 15 healthy males. We measured the blood oxygen level dependent (BOLD) response and eye movements during a mixed antisaccade/prosaccade task while participants received a subanesthetic dose of intravenous ketamine (target plasma level 100 ng/ml) on one occasion and placebo on the other occasion. Results While ketamine significantly increased self-ratings of psychosis-like experiences, it did not induce antisaccade or prosaccade performance deficits. At the level of BOLD, we observed an interaction between treatment and task condition in somatosensory cortex, suggesting recruitment of additional neural resources in the antisaccade condition under NMDAR blockage. Discussion Given the robust evidence ofantisaccade deficits in schizophrenia spectrum populations, the current findings suggest that ketamine may not mimic all features ofpsychosis at the dose used in this study. Our findings underline the importance of a more detailed research to further understand and define effects of NMDAR hypofunction on human brain function and behavior, with a view to applying ketamine administration as a model system of psychosis. Future studies with varying doses will be of importance in this context. |
Daniel Marten Es; Jan Theeuwes; Tomas Knapen Spatial sampling in human visual cortex is modulated by both spatial and feature-based attention Journal Article In: eLife, vol. 7, pp. 1–28, 2018. @article{Es2018, Spatial attention changes the sampling of visual space. Behavioral studies suggest that feature-based attention modulates this resampling to optimize the attended feature's sampling. We investigate this hypothesis by estimating spatial sampling in visual cortex while independently varying both feature-based and spatial attention. Our results show that spatial and feature-based attention interacted: resampling of visual space depended on both the attended location and feature (color vs. temporal frequency). This interaction occurred similarly throughout visual cortex, regardless of an area's overall feature preference. However, the interaction did depend on spatial sampling properties of voxels that prefer the attended feature. These findings are parsimoniously explained by variations in the precision of an attentional gain field. Our results demonstrate that the deployment of spatial attention is tailored to the spatial sampling properties of units that are sensitive to the attended feature. |
Koen Lith; Dick Johan Veltman; Moran Daniel Cohn; Louise Else Pape; Marieke Eleonora Akker-Nijdam; Amanda Wilhelmina Geertruida Loon; Pierre Bet; Guido Alexander Wingen; Wim Brink; Theo Doreleijers; Arne Popma Effects of methylphenidate during fear learning in antisocial adolescents: A randomized controlled fMRI trial Journal Article In: Journal of the American Academy of Child and Adolescent Psychiatry, vol. 57, no. 12, pp. 934–943, 2018. @article{Lith2018, Objective: Although the neural underpinnings of antisocial behavior have been studied extensively, research on pharmacologic interventions targeting specific neural mechanisms remains sparse. Hypoactivity of the amygdala and ventromedial prefrontal cortex (vmPFC) has been reported in antisocial adolescents, which could account for deficits in fear learning (amygdala) and impairments in decision making (vmPFC), respectively. Limited clinical research suggests positive effects of methylphenidate, a dopamine agonist, on antisocial behavior in adolescents. Dopamine is a key neurotransmitter involved in amygdala and vmPFC functioning. The objective of this study was to investigate whether methylphenidate targets dysfunctions in these brain areas in adolescents with antisocial behavior. Method: A group of 42 clinical referred male adolescents (14–17 years old) with a disruptive behavior disorder performed a fear learning/reversal paradigm in a randomized double-blinded placebo-controlled pharmacologic functional magnetic resonance imaging study. Participants with disruptive behavior disorder were randomized to receive a single dose of methylphenidate 0.3 to 0.4 mg/kg (n = 22) or placebo (n = 20) and were compared with 21 matched healthy controls not receiving medication. Results: In a region-of-interest analysis of functional magnetic resonance imaging data during fear learning, the placebo group showed hyporeactivity of the amygdala compared with healthy controls, whereas amygdala reactivity was normalized in the methylphenidate group. There were no group differences in vmPFC reactivity during fear reversal learning. Whole-brain analyses showed no group differences. Conclusion: These findings suggest that methylphenidate is a promising pharmacologic intervention for youth antisocial behavior that could restore amygdala functioning. |
Anouk Mariette Loon; Katya Olmos-Solis; Johannes J. Fahrenfort; Christian N. L. Olivers Current and future goals are represented in opposite patterns in object-selective cortex Journal Article In: eLife, vol. 7, pp. 1–25, 2018. @article{Loon2018, Adaptive behavior requires the separation of current from future goals in working memory. We used fMRI of object-selective cortex to determine the representational (dis)similarities of memory representations serving current and prospective perceptual tasks. Participants remembered an object drawn from three possible categories as the target for one of two consecutive visual search tasks. A cue indicated whether the target object should be looked for first (currently relevant), second (prospectively relevant), or if it could be forgotten (irrelevant). Prior to the first search, representations of current, prospective and irrelevant objects were similar, with strongest decoding for current representations compared to prospective (Experiment 1) and irrelevant (Experiment 2). Remarkably, during the first search, prospective representations could also be decoded, but revealed anti-correlated voxel patterns compared to currently relevant representations of the same category. We propose that the brain separates current from prospective memories within the same neuronal ensembles through opposite representational patterns. |
Maryam Vaziri-Pashkam; JohnMark Taylor; Yaoda Xu Spatial frequency tolerant visual object representations in the human ventral and dorsal visual processing pathways Journal Article In: Journal of Cognitive Neuroscience, vol. 31, no. 1, pp. 49–63, 2018. @article{VaziriPashkam2018, Primate ventral and dorsal visual pathways both contain visual object representations. Dorsal regions receive more input from magnocellular system while ventral regions receive inputs from both magnocellular and parvocellular systems. Due to potential differences in the spatial sensitivites of man- ocellular and parvocellular systems, object representations in ventral and dorsal regions may differ in how they represent visual input from different spatial scales. To test this prediction, we asked observers to view blocks of images from six object catego- ries, shown in full spectrum, high spatial frequency (SF), or low SF. We found robust object category decoding in all SF conditions as well as SF decoding in nearly all the early visual, ventral, and dorsal regions examined. Cross-SF decoding further revealed that object category representations in all regions exhibited sub- stantial tolerance across the SF components. No difference between ventral and dorsal regions was found in their preference for the different SF components. Further comparisons revealed that, whereas differences in the SF component separated object category representations in early visual areas, such a separation was much smaller in downstream ventral and dorsal regions. In those regions, variations among the object categories played a more significant role in shaping the visual representational structures. Our findings show that ventral and dorsal regions are sim- ilar in how they represent visual input from different spatial scales and argue against a dissociation of these regions based on differential sensitivity to different SFs. |
E. A. Allen; E. Damaraju; T. Eichele; L. Wu; V. D. Calhoun EEG signatures of dynamic functional network connectivity states Journal Article In: Brain Topography, vol. 31, no. 1, pp. 101–116, 2018. @article{Allen2018, The human brain operates by dynamically mod- ulating different neural populations to enable goal directed behavior. The synchrony or lack thereof between different brain regions is thought to correspond to observed functional connectivity dynamics in resting state brain imaging data. In a large sample of healthy human adult subjects and utilizing a sliding windowed correlation method on functional imaging data, earlier we demonstrated the presence of seven distinct functional connectivity states/patterns between different brain networks that reliably occur across time and subjects. Whether these connectivity states correspond to meaningful electrophysiological signatures was not clear. In this study, using a dataset with concurrent EEG and resting state functional imaging data acquired during eyes open and eyes closed states, we demonstrate the replicability of previous findings in an independent sample, and identify EEG spectral signatures associated with these functional network connectivity changes. Eyes open and eyes closed conditions show common and different connectivity patterns that are associated with distinct EEG spectral signatures. Certain connectivity states are more prevalent in the eyes open case and some occur only in eyes closed state. Both conditions exhibit a state of increased thalamo-cortical anticorrelation associated with reduced EEG spec- tral alpha power and increased delta and theta power possi- bly reflecting drowsiness. This state occurs more frequently in the eyes closed state. In summary, we find a link between dynamic connectivity in fMRI data and concurrently collected EEG data, including a large effect of vigilance on functional connectivity. As demonstrated with EEG and fMRI, the stationarity of connectivity cannot be assumed, even for relatively short periods. |
Noah C. Benson; Keith W. Jamison; Michael J. Arcaro; An T. Vu; Matthew F. Glasser; Timothy S. Coalson; David C. Van Essen; Essa Yacoub; Kamil Ugurbil; Jonathan Winawer; Kendrick N. Kay The Human Connectome Project 7 Tesla retinotopy dataset: Description and population receptive field analysis Journal Article In: Journal of Vision, vol. 18, no. 13, pp. 1–22, 2018. @article{Benson2018, About a quarter of human cerebral cortex is dedicated mainly to visual processing. The large-scale spatial organization of visual cortex can be measured with functional magnetic resonance imaging (fMRI) while subjects view spatially modulated visual stimuli, also known as ‘‘retinotopic mapping.'' One of the datasets collected by the Human Connectome Project involved ultra high-field (7 Tesla) fMRI retinotopic mapping in 181 healthy young adults (1.6-mm resolution), yielding the largest freely available collection of retinotopy data. Here, we describe the experimental paradigm and the results of model-based analysis of the fMRI data. These results provide estimates of population receptive field position and size. Our analyses include both results from individual subjects as well as results obtained by averaging fMRI time series across subjects at each cortical and subcortical location and then fitting models. Both the group-average and individual-subject results reveal robust signals across much of the brain, including occipital, temporal, parietal, and frontal cortex as well as subcortical areas. The group-average results agree well with previously published parcellations of visual areas. In addition, split-half analyses show strong within-subject reliability, further demonstrating the high quality of the data. We make publicly available the analysis results for individual subjects and the group avera ge, as well as associated stimuli and analysis code. These resources provide an opportunity for studying fine-scale individual variability in cortical and subcortical organization and the properties of high-resolution fMRI. In addition, they provide a set of observations that can be compared with other Human Connectome Project measures acquired in these same participants. |
Daniel K. Bjornn; Bonnie Brinton Anderson; Anthony Vance; Jeffrey L. Jenkins; C. Brock Kirwan Tuning out security warnings: A longitudinal examination of habituation through fMRI, eye tracking, and field experiments Journal Article In: MIS Quarterly, vol. 42, no. 2, pp. 355–380, 2018. @article{Bjornn2018, Research in the fields of information systems and human-computer interaction has shown that habituation— decreased response to repeated stimulation—is a serious threat to the effectiveness of security warnings. Although habituation is a neurobiological phenomenon that develops over time, past studies have only examined this problem cross-sectionally. Further, past studies have not examined how habituation influences actual security warning adherence in the field. For these reasons, the full extent of the problem of habituation is unknown. We address these gaps by conducting two complementary longitudinal experiments. First, we performed an experiment collecting fMRI and eye-tracking data simultaneously to directly measure habituation to security warnings as it develops in the brain over a five-day workweek. Our results show not only a general decline of participants' attention to warnings over time but also that attention recovers at least partially between workdays without exposure to the warnings. Further, we found that updating the appearance of a warning— that is, a polymorphic design—substantially reduced habituation of attention. Second, we performed a three-week field experiment in which users were naturally exposed to privacy permis-sion warnings as they installed apps on their mobile devices. Consistent with our fMRI results, users' warning adherence substantially decreased over the three weeks. However, for users who received polymorphic permis-sion warnings, adherence dropped at a substantially lower rate and remained high after three weeks, compared to users who received standard warnings. Together, these findings provide the most complete view yet of the problem of habituation to security warnings and demonstrate that polymorphic warnings can substantially improve adherence. |
Johannes Bloechle; Stefan Huber; Elise Klein; Julia Bahnmueller; Korbinian Moeller; Johannes Rennig Neuro-cognitive mechanisms of global Gestalt perception in visual quantification Journal Article In: NeuroImage, vol. 181, pp. 359–369, 2018. @article{Bloechle2018, Recent neuroimaging studies identified posterior regions in the temporal and parietal lobes as neuro-functional correlates of subitizing and global Gestalt perception. Beyond notable overlap on a neuronal level both mechanisms are remarkably similar on a behavioral level representing both a specific form of visual top-down processing where single elements are integrated into a superordinate entity. In the present study, we investigated whether subitizing draws on principles of global Gestalt perception enabling rapid top-down processes of visual quantification. We designed two functional neuroimaging experiments: a task identifying voxels responding to global Gestalt stimuli in posterior temporo-parietal brain regions and a visual quantification task on dot patterns with magnitudes within and outside the subitizing range. We hypothesized that voxels activated in global Gestalt perception should respond stronger to dot patterns within than those outside the subitizing range. The results confirmed this prediction for left-hemispheric posterior temporo-parietal brain areas. Additionally, we trained a classifier with response patterns from global Gestalt perception to predict neural responses of visual quantification. With this approach we were able to classify from TPJ Gestalt ROIs of both hemispheres whether a trial requiring subitizing was processed. The present study demonstrates that mechanisms of subitizing seem to build on processes of high-level visual perception. |
Johannes Bloechle; Stefan Huber; Elise Klein; Julia Bahnmueller; Johannes Rennig; Korbinian Moeller; Julia F. Huber Spatial arrangement and set size influence the coding of non-symbolic quantities in the intraparietal sulcus Journal Article In: Frontiers in Human Neuroscience, vol. 12, pp. 54, 2018. @article{Bloechle2018a, Performance in visual quantification tasks shows two characteristic patterns as a function of set size. A precise subitizing process for small sets (up to four) was contrasted with an approximate estimation process for larger sets. The spatial arrangement of elements in a set also influences visual quantification performance, with frequently perceived arrangements (e.g., dice patterns) being faster enumerated than random arrangements. Neuropsychological and imaging studies identified the intraparietal sulcus (IPS), as key brain area for quantification, both within and above the subitizing range. However, it is not yet clear if and how set size and spatial arrangement of elements in a set modulate IPS activity during quantification. In an fMRI study, participants enumerated briefly presented dot patterns with random, canonical or dice arrangement within and above the subitizing range. We evaluated how activity amplitude and pattern in the IPS were influenced by size and spatial arrangement of a set. We found a discontinuity in the amplitude of IPS response between subitizing and estimation range, with steep activity increase for sets exceeding four elements. In the estimation range, random dot arrangements elicited stronger IPS response than canonical arrangements which in turn elicited stronger response than dice arrangements. Furthermore, IPS activity patterns differed systematically between arrangements. We found a signature in the IPS response for a transition between subitizing and estimation processes during quantification. Differences in amplitude and pattern of IPS activity for different spatial arrangements indicated a more precise representation of non-symbolic numerical magnitude for dice and canonical than for random arrangements. These findings challenge the idea of an abstract coding of numerosity in the IPS even within a single notation. |
Michael B. Bone; Marie St-Laurent; Christa Dang; Douglas A. McQuiggan; Jennifer D. Ryan; Bradley R. Buchsbaum; Jennifer D. Ryan; Christa Dang; Michael B. Bone; Marie St-Laurent Eye movement reinstatement and neural reactivation during mental imagery Journal Article In: Cerebral Cortex, vol. 29, no. 3, pp. 1075–1089, 2018. @article{Bone2018, Half a century ago, Donald Hebb posited that mental imagery is a constructive process that emulates perception. Specifically, Hebb claimed that visual imagery results from the reactivation of neural activity associated with viewing images. He also argued that neural reactivation and imagery benefit from the re-enactment of eye movement patterns that first occurred at viewing (fixation reinstatement). To investigate these claims, we applied multivariate pattern analyses to functional MRI (fMRI) and eye-tracking data collected while healthy human participants repeatedly viewed and visualized complex images. We observed that the specificity of neural reactivation correlated positively with vivid imagery and with memory for stimulus image details. Moreover, neural reactivation correlated positively with fixation reinstatement, meaning that image-specific eye movements accompanied image-specific patterns of brain activity during visualization. These findings support the conception of mental imagery as a simulation of perception, and provide evidence of the supportive role of eye-movement in neural reactivation. |
James A. Brissenden; Sean M. Tobyne; David E. Osher; Emily J. Levin; Mark A. Halko; David C. Somers Topographic cortico-cerebellar networks revealed by visual attention and working memory Journal Article In: Current Biology, vol. 28, pp. 3364–3372, 2018. @article{Brissenden2018, Substantial portions of the cerebellum appear to support non-motor functions; however, previous investigations of cerebellar involvement in cognition have revealed only a coarse degree of specificity. Although somatotopic maps have been observed within cerebellum, similar precision within corticocerebellar networks supporting non-motor functions has not previously been reported. Here, we find that human cerebellar lobule VIIb/VIIIa differentially codes key aspects of visuospatial cognition. Ipsilateral visuospatial representations were observed during both a visual working memory and an attentionally demanding visual receptive field-mapping fMRI task paradigm. Moreover, within lobule VIIb/VIIIa, we observed a functional dissociation between spatial coding and visual working memory processing. Visuospatial representations were found in the dorsomedial portion of lobule VIIb/VIIIa, and load dependent visual working memory processing was shifted ventrolaterally. A similar functional gradient for spatial versus load processing was found in posterior parietal cortex. This cerebral cortical organization was well predicted by functional connectivity with spatial and load regions of cerebellar lobule VIIb/VIIIa. Collectively, our findings indicate that recruitment by visuospatial attentional functions within cerebellar lobule VIIb/VIIIa is highly specific. Furthermore, the topographic arrangement of these functions is mirrored in frontal and parietal cortex. These findings motivate a closer examination of cortico-cerebellar functional specialization across a broad range of cognitive domains. |
Rotem Broday-Dvir; Shany Grossman; Edna Furman-Haran; Rafael Malach Quenching of spontaneous fluctuations by attention in human visual cortex Journal Article In: NeuroImage, vol. 171, pp. 84–98, 2018. @article{BrodayDvir2018, In the absence of a task, the human brain enters a mode of slow spontaneous fluctuations. A fundamental, unresolved question is whether these fluctuations are ongoing and thus persist during task engagement, or alternatively, are quenched and replaced by task-related activations. Here, we examined this issue in the human visual cortex, using fMRI. Participants were asked to either perform a recognition task of randomly appearing face and non-face targets (attended condition) or watch them passively (unattended condition). Importantly, in approximately half of the trials, all sensory stimuli were absent. Our results show that even in the absence of stimuli, spontaneous fluctuations were suppressed by attention. The effect occurred in early visual cortex as well as in fronto-parietal attention network regions. During unattended trials, the activity fluctuations were negatively linked to pupil diameter, arguing against attentional fluctuations as underlying the effect. The results demonstrate that spontaneous fluctuations do not remain unchanged with task performance, but are rather modulated according to behavioral and cognitive demands. |
Daniel Carey; Francesco Caprini; Micah Allen; Antoine Lutti; Nikolaus Weiskopf; Geraint Rees; Martina F. Callaghan; Frederic Dick Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure Journal Article In: NeuroImage, vol. 182, pp. 429–440, 2018. @article{Carey2018, Measuring the structural composition of the cortex is critical to understanding typical development, yet few investigations in humans have charted markers in vivo that are sensitive to tissue microstructural attributes. Here, we used a well-validated quantitative MR protocol to measure four parameters (R1, MT, R2* PD*) that differ in their sensitivity to facets of the tissue microstructural environment (R1, MT: myelin, macromolecular content; R2*: myelin, paramagnetic ions, i.e., iron; PD*: free water content). Mapping these parameters across cortical regions in a young adult cohort (18–39 years |
Natalie Caspari; John T. Arsenault; Rik Vandenberghe; Wim Vanduffel Functional similarity of medial superior parietal areas for shift-selective attention signals in humans and monkeys Journal Article In: Cerebral Cortex, vol. 28, no. 6, pp. 2085–2099, 2018. @article{Caspari2018, We continually shift our attention between items in the visual environment. These attention shifts are usually based on task relevance (top-down) or the saliency of a sudden, unexpected stimulus (bottom-up), and are typically followed by goal-directed actions. It could be argued that any species that can covertly shift its focus of attention will rely on similar, evolutionarily conserved neural substrates for processing such shift-signals. To address this possibility, we performed comparative fMRI experiments in humans and monkeys, combining traditional, and novel, data-driven analytical approaches. Specifically, we examined correspondences between monkey and human brain areas activated during covert attention shifts. When " shift " events were compared with " stay " events, the medial (superior) parietal lobe (mSPL) and inferior parietal lobes showed similar shift sensitivities across species, whereas frontal activations were stronger in monkeys. To identify, in a data-driven manner, monkey regions that corresponded with human shift-selective SPL, we used a novel interspecies beta-correlation strategy whereby task-related beta-values were correlated across voxels or regions-of-interest in the 2 species. Monkey medial parietal areas V6/V6A most consistently correlated with shift-selective human mSPL. Our results indicate that both species recruit corresponding, evolutionarily conserved regions within the medial superior parietal lobe for shifting spatial attention. |
Marshall A. Dalton; Peter Zeidman; Cornelia McCormick; Eleanor A. Maguire Differentiable processing of objects, associations, and scenes within the hippocampus Journal Article In: Journal of Neuroscience, vol. 38, no. 38, pp. 8146–8159, 2018. @article{Dalton2018, The hippocampus is known to be important for a range of cognitive functions including episodic memory, spatial navigation and future-thinking. Wide agreement on the exact nature of its contribution has proved elusive, with some theories emphasising associative processes and another proposing that scene construction is its primary role. To directly compare these accounts of hippocampal function in human males and females, we devised a novel mental imagery paradigm where different tasks were closely matched for associative processing and mental construction, but either did or did not evoke scene representations, and we combined this with high resolution functional MRI. The results were striking in showing that differentiable parts of the hippocampus, along with distinct cortical regions, were recruited for scene construction or non-scene-evoking associative processing. The contrasting patterns of neural engagement could not be accounted for by differences in eye movements, mnemonic processing or the phenomenology of mental imagery. These results inform conceptual debates in the field by showing that the hippocampus does not seem to favour one type of process over another; it is not a story of exclusivity. Rather, there may be different circuits within the hippocampus, each associated with different cortical inputs, which become engaged depending on the nature of the stimuli and the task at hand. Overall, our findings emphasise the importance of considering the hippocampus as a heterogeneous structure, and that a focus on characterising how specific portions of the hippocampus interact with other brain regions may promote a better understanding of its role in cognition. |
Michelle I. C. Haan; Sonja Wel; Renée M. Visser; H. Steven Scholte; Guido A. Wingen; Merel Kindt The influence of acoustic startle probes on fear learning in humans Journal Article In: Scientific Reports, vol. 8, pp. 14552, 2018. @article{Haan2018, Even though human fear-conditioning involves affective learning as well as expectancy learning, most studies assess only one of the two distinct processes. Commonly used read-outs of associative fear learning are the fear-potentiated startle reflex (FPS), pupil dilation and US-expectancy ratings. FPS is thought to reflect the affective aspect of fear learning, while pupil dilation reflects a general arousal response. However, in order to measure FPS, aversively loud acoustic probes are presented during conditioning, which might in itself exert an effect on fear learning. Here we tested the effect of startle probes on fear learning by comparing brain activation (fMRI), pupil dilation and US-expectancy ratings with and without acoustic startle probes within subjects. Regardless of startle probes, fear conditioning resulted in enhanced dACC, insula and ventral striatum activation. Interaction analyses showed that startle probes diminished differential pupil dilation between CS+ and CS− due to increased pupil responses to CS−. A trend significant interaction effect was observed for US-expectancy and amygdala activation. Startle probes affect differential fear learning by impeding safety learning, as measured with pupil dilation, a read-out of the cognitive component of fear learning. However, we observed no significant effect of acoustic startle probes on other measures of fear learning. |
Benjamin Haas; Dietrich Samuel Schwarzkopf Spatially selective responses to Kanizsa and occlusion stimuli in human visual cortex Journal Article In: Scientific Reports, vol. 8, pp. 611, 2018. @article{Haas2018, Early visual cortex responds to illusory contours in which abutting lines or collinear edges imply the presence of an occluding surface, as well as to occluded parts of an object. Here we used functional magnetic resonance imaging (fMRI) and population receptive field (pRF) analysis to map retinotopic responses in early visual cortex using bar stimuli defined by illusory contours, occluded parts of a bar, or subtle luminance contrast. All conditions produced retinotopic responses in early visual field maps even though signal-to-noise ratios were very low. We found that signal-to-noise ratios and coherence with independent high-contrast mapping data increased from V1 to V2 to V3. Moreover, we found no differences of signal-to-noise ratios or pRF sizes between the low-contrast luminance and illusion conditions. We propose that all three conditions mapped spatial attention to the bar location rather than activations specifically related to illusory contours or occlusion. |
Katharina Dobs; Johannes Schultz; Isabelle Bülthoff; Justin L. Gardner Task-dependent enhancement of facial expression and identity representations in human cortex Journal Article In: NeuroImage, vol. 172, pp. 689–702, 2018. @article{Dobs2018, What cortical mechanisms allow humans to easily discern the expression or identity of a face? Subjects detected changes in expression or identity of a stream of dynamic faces while we measured BOLD responses from topographically and functionally defined areas throughout the visual hierarchy. Responses in dorsal areas increased during the expression task, whereas responses in ventral areas increased during the identity task, consistent with previous studies. Similar to ventral areas, early visual areas showed increased activity during the identity task. If visual responses are weighted by perceptual mechanisms according to their magnitude, these increased responses would lead to improved attentional selection of the task-appropriate facial aspect. Alternatively, increased responses could be a signature of a sensitivity enhancement mechanism that improves representations of the attended facial aspect. Consistent with the latter sensitivity enhancement mechanism, attending to expression led to enhanced decoding of exemplars of expression both in early visual and dorsal areas relative to attending identity. Similarly, decoding identity exemplars when attending to identity was improved in dorsal and ventral areas. We conclude that attending to expression or identity of dynamic faces is associated with increased selectivity in representations consistent with sensitivity enhancement. |
Laura Dugué; Elisha P. Merriam; David J. Heeger; Marisa Carrasco Specific visual subregions of TPJ mediate reorienting of spatial attention Journal Article In: Cerebral Cortex, vol. 28, no. 7, pp. 2375–2390, 2018. @article{Dugue2018, The temporo-parietal junction (TPJ) has been associated with various cognitive and social functions, and is critical for attentional reorienting. Attention affects early visual processing. Neuroimaging studies dealing with such processes have thus far concentrated on striate and extrastriate areas. Here, we investigated whether attention orienting or reorienting modulate activity in visually driven TPJ subregions. For each observer we identified 3 visually responsive subregions within TPJ: 2 bilateral (vTPJ ant and vTPJ post) and 1 right lateralized (vTPJ cent). Cortical activity in these subregions was measured using fMRI while observers performed a 2-alternative forced-choice orientation discrimination task. Covert spatial endogenous (voluntary) or exogenous (involuntary) attention was manipulated using either a central or a peripheral cue with task, stimuli and observers constant. Both endogenous and exogenous attention increased activity for invalidly cued trials in right vTPJ post ; only endogenous attention increased activity for invalidly cued trials in left vTPJ post and in right vTPJ cent ; and neither type of attention modulated either right or left vTPJ ant . These results demonstrate that vTPJ post and vTPJ cent mediate the reorientation of covert attention to task relevant stimuli, thus playing a critical role in visual attention. These findings reveal a differential reorienting cortical response after observers' attention has been oriented to a given location voluntarily or involuntarily. |
Katherine Duncan; Bradley B. Doll; Nathaniel D. Daw; Daphna Shohamy More than the sum of its parts: A role for the hippocampus in configural reinforcement learning Journal Article In: Neuron, vol. 98, no. 3, pp. 645–657.e6, 2018. @article{Duncan2018, People often perceive configurations rather than the elements they comprise, a bias that may emerge because configurations often predict outcomes. But how does the brain learn to associate configurations with outcomes and how does this learning differ from learning about individual elements? We combined behavior, reinforcement learning models, and functional imaging to understand how people learn to associate configurations of cues with outcomes. We found that configural learning depended on the relative predictive strength of elements versus configurations and was related to both the strength of BOLD activity and patterns of BOLD activity in the hippocampus. Configural learning was further related to functional connectivity between the hippocampus and nucleus accumbens. Moreover, configural learning was associated with flexible knowledge about associations and differential eye movements during choice. Together, this suggests that configural learning is associated with a distinct computational, cognitive, and neural profile that is well suited to support flexible and adaptive behavior. Duncan et al. investigate how people learn to predict outcomes using cue configurations. They show that configural learning is characterized by unique computational, behavioral, and neural signatures, including hippocampal activity, interactions between the hippocampus and striatum, and enhanced flexible knowledge. |
Thomas Pfeffer; Arthur Ervin Avramiea; Guido Nolte; Andreas K. Engel; Klaus Linkenkaer-Hansen; Tobias H. Donner Catecholamines alter the intrinsic variability of cortical population activity and perception Journal Article In: PLoS Biology, vol. 16, no. 2, pp. e2003453, 2018. @article{Pfeffer2018, The ascending modulatory systems of the brain stem are powerful regulators of global brain state. Disturbances of these systems are implicated in several major neuropsychiatric disorders. Yet, how these systems interact with specific neural computations in the cerebral cortex to shape perception, cognition, and behavior remains poorly understood. Here, we probed into the effect of two such systems, the catecholaminergic (dopaminergic and noradrenergic) and cholinergic systems, on an important aspect of cortical computation: its intrinsic variability. To this end, we combined placebo-controlled pharmacological intervention in humans, recordings of cortical population activity using magnetoencephalography (MEG), and psychophysical measurements of the perception of ambiguous visual input. A low-dose catecholaminergic, but not cholinergic, manipulation altered the rate of spontaneous perceptual fluctuations as well as the temporal structure of “scale-free” population activity of large swaths of the visual and parietal cortices. Computational analyses indicate that both effects were consistent with an increase in excitatory relative to inhibitory activity in the cortical areas underlying visual perceptual inference. We propose that catecholamines regulate the variability of perception and cognition through dynamically changing the cortical excitation–inhibition ratio. The combined readout of fluctuations in perception and cortical activity we established here may prove useful as an efficient and easily accessible marker of altered cortical computation in neuropsychiatric disorders. |
K. Seeliger; Matthias Fritsche; U. Güçlü; S. Schoenmakers; J. M. Schoffelen; S. E. Bosch; Marcel A. J. Gerven Convolutional neural network-based encoding and decoding of visual object recognition in space and time Journal Article In: NeuroImage, vol. 180, pp. 253–266, 2018. @article{Seeliger2018, Representations learned by deep convolutional neural networks (CNNs) for object recognition are a widely investigated model of the processing hierarchy in the human visual system. Using functional magnetic resonance imaging, CNN representations of visual stimuli have previously been shown to correspond to processing stages in the ventral and dorsal streams of the visual system. Whether this correspondence between models and brain signals also holds for activity acquired at high temporal resolution has been explored less exhaustively. Here, we addressed this question by combining CNN-based encoding models with magnetoencephalography (MEG). Human participants passively viewed 1,000 images of objects while MEG signals were acquired. We modelled their high temporal resolution source-reconstructed cortical activity with CNNs, and observed a feed-forward sweep across the visual hierarchy between 75 and 200 ms after stimulus onset. This spatiotemporal cascade was captured by the network layer representations, where the increasingly abstract stimulus representation in the hierarchical network model was reflected in different parts of the visual cortex, following the visual ventral stream. We further validated the accuracy of our encoding model by decoding stimulus identity in a left-out validation set of viewed objects, achieving state-of-the-art decoding accuracy. |
Rodolfo Solís-Vivanco; Ole Jensen; Mathilde Bonnefond Top–down control of alpha phase adjustment in anticipation of temporally predictable visual stimuli Journal Article In: Journal of Cognitive Neuroscience, vol. 30, no. 8, pp. 1157–1169, 2018. @article{SolisVivanco2018, Alpha oscillations (8–14 Hz) are proposed to represent an active mechanism of functional inhibition of neuronal processing. Specifically, alpha oscillations are associated with pulses of inhibition repeating every ∼100 msec. Whether alpha phase, similar to alpha power, is under top–down control remains unclear. Moreover, the sources of such putative top–down phase control are unknown. We designed a cross-modal (visual/auditory) attention study in which we used magnetoencephalography to record the brain activity from 34 healthy participants. In each trial, a somatosensory cue indicated whether to attend to either the visual or auditory domain. The timing of the stimulus onset was predictable across trials. We found that, when visual information was attended, anticipatory alpha power was reduced in visual areas, whereas the phase adjusted just before the stimulus onset. Performance in each modality was predicted by the phase of the alpha oscillations previous to stimulus onset. Alpha oscillations in the left pFC appeared to lead the adjustment of alpha phase in visual areas. Finally, alpha phase modulated stimulus-induced gamma activity. Our results confirm that alpha phase can be top–down adjusted in anticipation of predictable stimuli and improve performance. Phase adjustment of the alpha rhythm might serve as a neurophysiological resource for optimizing visual processing when temporal predictions are possible and there is considerable competition between target and distracting stimuli. |
Elena V. Orekhova; Olga V. Sysoeva; Justin F. Schneiderman; Sebastian Lundström; Ilia A. Galuta; Dzerasa E. Goiaeva; Andrey O. Prokofyev; Bushra Riaz; Courtney Keeler; Nouchine Hadjikhani; Christopher Gillberg; Tatiana A. Stroganova Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex Journal Article In: Scientific Reports, vol. 8, pp. 8451, 2018. @article{Orekhova2018, Gamma-band oscillations arise from the interplay between neural excitation (E) and inhibition (I) and may provide a non-invasive window into the state of cortical circuitry. A bell-shaped modulation of gamma response power by increasing the intensity of sensory input was observed in animals and is thought to reflect neural gain control. Here we sought to find a similar input-output relationship in humans with MEG via modulating the intensity of a visual stimulation by changing the velocity/ temporal-frequency of visual motion. In the first experiment, adult participants observed static and moving gratings. The frequency of the MEG gamma response monotonically increased with motion velocity whereas power followed a bell-shape. In the second experiment, on a large group of children and adults, we found that despite drastic developmental changes in frequency and power of gamma oscillations, the relative suppression at high motion velocities was scaled to the same range of values across the life-span. In light of animal and modeling studies, the modulation of gamma power and frequency at high stimulation intensities characterizes the capacity of inhibitory neurons to counterbalance increasing excitation in visual networks. Gamma suppression may thus provide a non- invasive measure of inhibitory-based gain control in the healthy and diseased brain. |
Hyojin Park; Robin A. A. Ince; Philippe G. Schyns; Gregor Thut; Joachim Gross In: PLoS Biology, vol. 16, no. 8, pp. e2006558, 2018. @article{Park2018, Integration of multimodal sensory information is fundamental to many aspects of human behavior, but the neural mechanisms underlying these processes remain mysterious. For example, during face-to-face communication, we know that the brain integrates dynamic auditory and visual inputs, but we do not yet understand where and how such integration mechanisms support speech comprehension. Here, we quantify representational interactions between dynamic audio and visual speech signals and show that different brain regions exhibit different types of representational interaction. With a novel information theoretic measure, we found that theta (3-7 Hz) oscillations in the posterior superior temporal gyrus/sulcus (pSTG/S) represent auditory and visual inputs redundantly (i.e., represent common features of the two), whereas the same oscillations in left motor and inferior temporal cortex represent the inputs synergistically (i.e., the instantaneous relationship between audio and visual inputs is also represented). Importantly, redundant coding in the left pSTG/S and synergistic coding in the left motor cortex predict behavior-i.e., speech comprehension performance. Our findings therefore demonstrate that processes classically described as integration can have different statistical properties and may reflect distinct mechanisms that occur in different brain regions to support audiovisual speech comprehension. |
Tobias Staudigl; Marcin Leszczynski; Joshua Jacobs; Sameer A. Sheth; Charles E. Schroeder; Ole Jensen; Christian F. Doeller Hexadirectional modulation of high-frequency electrophysiological activity in the human anterior medial temporal lobe maps visual space Journal Article In: Current Biology, vol. 28, pp. 1–5, 2018. @article{Staudigl2018, Grid cells are one of the core building blocks of spatial navigation [1]. Single-cell recordings of grid cells in the rodent entorhinal cortex revealed hexagonal coding of the local environment during spatial navigation [1]. Grid-like activity has also been identified in human single-cell recordings during virtual navigation [2]. Human fMRI studies further provide evidence that grid-like signals are also accessible on a macroscopic level [3–7]. Studies in both nonhuman primates [8] and humans [9, 10] suggest that grid-like coding in the entorhinal cortex generalizes beyond spatial navigation during locomotion, providing evidence for grid-like mapping of visual space during visual exploration—akin to the grid cell positional code in rodents during spatial navigation. However, electrophysiological correlates of the grid code in humans remain unknown. Here, we provide evidence for grid-like, hexadirectional coding of visual space by human high-frequency activity, based on two independent datasets: non-invasive magnetoencephalography (MEG) in healthy subjects and entorhinal intracranial electroencephalography (EEG) recordings in an epileptic patient. Both datasets consistently show a hexadirectional modulation of broadband high-frequency activity (60–120 Hz). Our findings provide first evidence for a grid-like MEG signal, indicating that the human entorhinal cortex codes visual space in a grid-like manner [8–10], and support the view that grid coding generalizes beyond environmental mapping during locomotion [4–6, 11]. Due to their millisecond accuracy, MEG recordings allow linking of grid-like activity to epochs during relevant behavior, thereby opening up the possibility for new MEG-based investigations of grid coding at high temporal resolution. |
Regine Zopf; Marina Butko; Alexandra Woolgar; Mark A. Williams; Anina N. Rich Representing the location of manipulable objects in shape-selective occipitotemporal cortex: Beyond retinotopic reference frames? Journal Article In: Cortex, vol. 106, pp. 132–150, 2018. @article{Zopf2018, When interacting with objects, we have to represent their location relative to our bodies. To facilitate bodily reactions, location may be encoded in the brain not just with respect to the retina (retinotopic reference frame), but also in relation to the head, trunk or arm (collectively spatiotopic reference frames). While spatiotopic reference frames for location encoding can be found in brain areas for action planning, such as parietal areas, there is debate about the existence of spatiotopic reference frames in higher-level occipitotemporal visual areas. In an extensive multi-voxel pattern analysis (MVPA) fMRI study using faces, headless bodies and scenes stimuli, Golomb and Kanwisher (2012) did not find evidence for spatiotopic reference frames in shape-selective occipitotemporal cortex. This finding is important for theories of how stimulus location is encoded in the brain. It is possible, however, that their failure to find spatiotopic reference frames is related to their stimuli: we typically do not manipulate faces, headless bodies or scenes. It is plausible that we only represent body-centred location when viewing objects that are typically manipulated. Here, we tested for object location encoding in shape-selective occipitotemporal cortex using manipulable object stimuli (balls and cups) in a MVPA fMRI study. We employed Bayesian analyses to determine sample size and evaluate the sensitivity of our data to test the hypothesis that location can be encoded in a spatiotopic reference frame in shape-selective occipitotemporal cortex over the null hypothesis of no spatiotopic location encoding. We found strong evidence for retinotopic location encoding consistent with previous findings that retinotopic reference frames are common neural representations of object location. In contrast, when testing for spatiotopic encoding, we found evidence that object location information for small manipulable objects is not decodable in relation to the body in shape-selective occipitotemporal cortex. Post-hoc exploratory analyses suggested that spatiotopic aspects might modulate retinotopic location encoding. |
Iske Bakker-Marshall; Atsuko Takashima; Jan-Mathijs Schoffelen; Janet G. Hell; Gabriele Janzen; James M. McQueen Theta-band oscillations in the middle temporal gyrus reflect novel word consolidation Journal Article In: Journal of Cognitive Neuroscience, vol. 30, no. 5, pp. 621–633, 2018. @article{BakkerMarshall2018, Like many other types of memory formation, novel word learning benefits from an offline consolidation period after the initial encoding phase. A previous EEG study has shown that retrieval of novel words elicited more word-like-induced electrophysiological brain activity in the theta band after consolidation [Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. Changes in theta and beta oscillations as signatures of novel word consolidation. Journal of Cognitive Neuroscience, 27, 1286–1297, 2015]. This suggests that theta-band oscillations play a role in lexicalization, but it has not been demonstrated that this effect is directly caused by the formation of lexical representations. This study used magnetoencephalography to localize the theta consolidation effect to the left posterior middle temporal gyrus (pMTG), a region known to be involved in lexical storage. Both untrained novel words and words learned immediately before test elicited lower theta power during retrieval than existing words in this region. After a 24-hr consolidation period, the difference between novel and existing words decreased significantly, most strongly in the left pMTG. The magnitude of the decrease after consolidation correlated with an increase in behavioral competition effects between novel words and existing words with similar spelling, reflecting functional integration into the mental lexicon. These results thus provide new evidence that consolidation aids the development of lexical representations mediated by the left pMTG. Theta synchronizationmay enable lexical access by facilitating the simultaneous activation of distributed semantic, phonological, and orthographic representations that are bound together in the pMTG. |
Eran Eldar; Gyung Jin Bae; Zeb Kurth-Nelson; Peter Dayan; Raymond J. Dolan Magnetoencephalography decoding reveals structural differences within integrative decision processes Journal Article In: Nature Human Behaviour, vol. 2, no. 9, pp. 670–681, 2018. @article{Eldar2018, When confronted with complex inputs consisting of multiple elements, humans use various strategies to integrate the elements quickly and accurately. For instance, accuracy may or over be improved by processing elements one at a time1–4 extended periods5–8 ; speed can increase if the internal rep- resentation of elements is accelerated9,10 . However, little is known about how humans actually approach these challenges because behavioural findings can be accounted for by mul- tiple alternative process models11 and neuroimaging investi-gations typically rely on haemodynamic signals that change too slowly. Consequently, to uncover the fast neural dynamics that support information integration, we decoded magnetoencephalographic signals that were recorded as human subjects performed a complex decision task. Our findings reveal three sources of individual differences in the temporal structure of the integration process—sequential representation, partial reinstatement and early computation—each having a dissociable effect on how subjects handled problem complexity and temporal constraints. Our findings shed new light on the structure and influence of self-determined neural integration processes. |
Wei He; Blake W. Johnson Development of face recognition: Dynamic causal modelling of MEG data Journal Article In: Developmental Cognitive Neuroscience, vol. 30, pp. 13–22, 2018. @article{He2018, Electrophysiological studies of adults indicate that brain activity is enhanced during viewing of repeated faces, at a latency of about 250 ms after the onset of the face (M250/N250). The present study aimed to determine if this effect was also present in preschool-aged children, whose brain activity was measured in a custom-sized pediatric MEG system. The results showed that, unlike adults, face repetition did not show any significant modulation of M250 amplitude in children; however children's M250 latencies were significantly faster for repeated than non-repeated faces. Dynamic causal modelling (DCM) of the M250 in both age groups tested the effects of face repetition within the core face network including the occipital face area (OFA), the fusiform face area (FFA), and the superior temporal sulcus (STS). DCM revealed that repetition of identical faces altered both forward and backward connections in children and adults; however the modulations involved inputs to both FFA and OFA in adults but only to OFA in children. These findings suggest that the amplitude-insensitivity of the immature M250 may be due to a weaker connection between the FFA and lower visual areas. |
Simone G. Heideman; Gustavo Rohenkohl; Joshua J. Chauvin; Clare E. Palmer; Freek Ede; Anna C. Nobre Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults Journal Article In: NeuroImage, vol. 178, pp. 46–56, 2018. @article{Heideman2018a, Spatial and temporal expectations act synergistically to facilitate visual perception. In the current study, we sought to investigate the anticipatory oscillatory markers of combined spatial-temporal orienting and to test whether these decline with ageing. We examined anticipatory neural dynamics associated with joint spatial-temporal orienting of attention using magnetoencephalography (MEG) in both younger and older adults. Participants performed a cued covert spatial-temporal orienting task requiring the discrimination of a visual target. Cues indicated both where and when targets would appear. In both age groups, valid spatial-temporal cues significantly enhanced perceptual sensitivity and reduced reaction times. In the MEG data, the main effect of spatial orienting was the lateralised anticipatory modulation of posterior alpha and beta oscillations. In contrast to previous reports, this modulation was not attenuated in older adults; instead it was even more pronounced. The main effect of temporal orienting was a bilateral suppression of posterior alpha and beta oscillations. This effect was restricted to younger adults. Our results also revealed a striking interaction between anticipatory spatial and temporal orienting in the gamma-band (60–75 Hz). When considering both age groups separately, this effect was only clearly evident and only survived statistical evaluation in the older adults. Together, these observations provide several new insights into the neural dynamics supporting separate as well as combined effects of spatial and temporal orienting of attention, and suggest that different neural dynamics associated with attentional orienting appear differentially sensitive to ageing. |
Simone G. Heideman; Freek Ede; Anna C. Nobre Early behavioural facilitation by temporal expectations in complex visual-motor sequences Journal Article In: Neuroscience, vol. 389, pp. 74–84, 2018. @article{Heideman2018b, In daily life, temporal expectations may derive from incidental learning of recurring patterns of intervals. We investigated the incidental acquisition and utilisation of combined temporal-ordinal (spatial/effector) structure in complex visual-motor sequences using a modified version of a serial reaction time (SRT) task. In this task, not only the series of targets/responses, but also the series of intervals between subsequent targets was repeated across multiple presentations of the same sequence. Each participant completed three sessions. In the first session, only the repeating sequence was presented. During the second and third session, occasional probe blocks were presented, where a new (unlearned) spatial-temporal sequence was introduced. We first confirm that participants not only got faster over time, but that they were slower and less accurate during probe blocks, indicating that they incidentally learned the sequence structure. Having established a robust behavioural benefit induced by the repeating spatial-temporal sequence, we next addressed our central hypothesis that implicit temporal orienting (evoked by the learned temporal structure) would have the largest influence on performance for targets following short (as opposed to longer) intervals between temporally structured sequence elements, paralleling classical observations in tasks using explicit temporal cues. We found that indeed, reaction time differences between new and repeated sequences were largest for the short interval, compared to the medium and long intervals, and that this was the case, even when comparing late blocks (where the repeated sequence had been incidentally learned), to early blocks (where this sequence was still unfamiliar). We conclude that incidentally acquired temporal expectations that follow a sequential structure can have a robust facilitatory influence on visually-guided behavioural responses and that, like more explicit forms of temporal orienting, this effect is most pronounced for sequence elements that are expected at short inter-element intervals. |
Simone G. Heideman; Freek Ede; Anna C. Nobre Temporal alignment of anticipatory motor cortical beta lateralisation in hidden visual-motor sequences Journal Article In: European Journal of Neuroscience, vol. 48, no. 8, pp. 2684–2695, 2018. @article{Heideman2018, Performance improves when participants respond to events that are structured in repeating sequences, suggesting that learning can lead to proactive anticipatory preparation. Whereas most sequence-learning studies have emphasised spatial structure, most sequences also contain a prominent temporal structure. We used MEG to investigate spatial and temporal anticipatory neural dynamics in a modified serial reaction time (SRT) task. Performance and brain activity were compared between blocks with learned spatial-temporal sequences and blocks with new sequences. After confirming a strong behavioural benefit of spatial-temporal predictability, we show lateralisation of beta oscillations in anticipation of the response associated with the upcoming target location and show that this also aligns to the expected timing of these forthcoming events. This effect was found both when comparing between repeated (learned) and new (unlearned) sequences, as well as when comparing targets that were expected after short vs. long intervals within the repeated (learned) sequence. Our findings suggest that learning of spatial-temporal structure leads to proactive and dynamic modulation of motor cortical excitability in anticipation of both the location and timing of events that are relevant to guide action. |
Carina Kelbsch; Archana Jalligampala; Torsten Strasser; Paul Richter; Katarina Stingl; Christoph Braun; Daniel L. Rathbun; Eberhart Zrenner; Helmut Wilhelm; Barbara Wilhelm; Tobias Peters; Krunoslav Stingl Phosphene perception and pupillary responses to sinusoidal electrostimulation - For an objective measurement of retinal function Journal Article In: Experimental Eye Research, vol. 176, pp. 210–218, 2018. @article{Kelbsch2018, The purpose was to evaluate retinal function by measuring pupillary responses to sinusoidal transcorneal electrostimulation in healthy young human subjects. This work also translates data from analogous in vitro experiments and connects it to the pupillary responses obtained in human experiments. 14 healthy human subjects participated (4 males, 10 females); for the in vitro experiments, two male healthy mouse retinas (adult wild-type C57B/6J) were used. Pupillary responses to sinusoidal transcorneal electrostimulation of varying stimulus carrier frequencies (10, 20 Hz; envelope frequency constantly kept at 1.2 Hz) and intensities (10, 20, 50 μA) were recorded and compared with those obtained with light stimulation (1.2 Hz sinusoidal blue, red light). A strong correlation between the sinusoidal stimulation (electrical as well as light) and the pupillary sinusoidal response was found. The difference between the lag of electrical and light stimulation allowed the estimation of an intensity threshold for pupillary responses to transcorneal electrostimulation (mean ± SD: 30 ± 10 μA (10 Hz); 38 ± 10 μA (20 Hz)). A comparison between the results of the two stimulation frequencies showed a not statistically significant smaller lag for 10 Hz (10 Hz: 633 ± 90 ms; 20 Hz: 725 ± 178 ms; 50 μA intensity). Analogous in vitro experiments on murine retinas indicated a selective stimulation of photoreceptors and bipolar cells (lower frequencies) and retinal ganglion cells (higher frequencies) and lower stimulation thresholds for the retinal network with sinusoidal compared to pulsatile stimulation – emphasizing that sinu- soidal waveforms are well-suited to our purposes. We demonstrate that pupillary responses to sinusoidal transcorneal electrostimulation are measurable as an objective marker in healthy young subjects, even at very low stimulus intensities. By using this unique approach, we unveil the potential for an estimation of the in- dividual intensity threshold and a selective activation of different retinal cell types in humans by varying the stimulation frequency. This technique may have broad clinical utility as well as specific relevance in the monitoring of patients with hereditary retinal disorders, especially as implemented in study protocols for novel therapies, e.g. retinal prostheses or gene therapies. |
Eline R. Kupers; Helena X. Wang; Kaoru Amano; Kendrick N. Kay; David J. Heeger; Jonathan Winawer A non-invasive, quantitative study of broadband spectral responses in human visual cortex Journal Article In: PLoS ONE, vol. 13, no. 3, pp. e0193107, 2018. @article{Kupers2018, Currently, non-invasive methods for studying the human brain do not routinely and reliably measure spike-rate-dependent signals, independent of responses such as hemodynamic coupling (fMRI) and subthreshold neuronal synchrony (oscillations and event-related potentials). In contrast, invasive methods-microelectrode recordings and electrocorticography (ECoG)-have recently measured broadband power elevation in field potentials (~50-200 Hz) as a proxy for locally averaged spike rates. Here, we sought to detect and quantify stimulus-related broadband responses using magnetoencephalography (MEG). Extracranial measurements like MEG and EEG have multiple global noise sources and relatively low signal-to-noise ratios; moreover high frequency artifacts from eye movements can be confounded with stimulus design and mistaken for signals originating from brain activity. For these reasons, we developed an automated denoising technique that helps reveal the broadband signal of interest. Subjects viewed 12-Hz contrast-reversing patterns in the left, right, or bilateral visual field. Sensor time series were separated into evoked (12-Hz amplitude) and broadband components (60-150 Hz). In all subjects, denoised broadband responses were reliably measured in sensors over occipital cortex, even in trials without microsaccades. The broadband pattern was stimulus-dependent, with greater power contralateral to the stimulus. Because we obtain reliable broadband estimates with short experiments (~20 minutes), and with sufficient signal-to-noise to distinguish responses to different stimuli, we conclude that MEG broadband signals, denoised with our method, offer a practical, non-invasive means for characterizing spike-rate-dependent neural activity for addressing scientific questions about human brain function. |
Mariya E. Manahova; Pim Mostert; Peter Kok; Jan-Mathijs Schoffelen; Floris P. Lange Stimulus familiarity and expectation jointly modulate neural activity in the visual ventral stream Journal Article In: Journal of Cognitive Neuroscience, vol. 30, no. 9, pp. 1366–1377, 2018. @article{Manahova2018, Prior knowledge about the visual world can change how a visual stimulus is processed. Two forms of prior knowledge are often distinguished: stimulus familiarity (i.e., whether a stimulus has been seen before) and stimulus expectation (i.e., whether a stimulus is expected to occur, based on the context). Neurophysiological studies in monkeys have shown suppression of spiking activity both for expected and for familiar items in object-selective inferotemporal cortex. It is an open question, however, if and how these types of knowledge interact in their modulatory effects on the sensory response. To address this issue and to examine whether previous findings generalize to noninvasively measured neural activity in humans, we separately manipulated stimulus familiarity and expectation while noninvasively recording human brain activity using magnetoencephalography. We observed independent suppression of neural activity by familiarity and expectation, specifically in the lateral occipital complex, the putative human homologue of monkey inferotemporal cortex. Familiarity also led to sharpened response dynamics, which was predominantly observed in early visual cortex. Together, these results show that distinct types of sensory knowledge jointly determine the amount of neural resources dedicated to object processing in the visual ventral stream. |
Pim Mostert; Anke Marit Albers; Loek Brinkman; Larisa Todorova; Peter Kok; Floris P. Lange Eye movement-related confounds in neural decoding of visual working memory representations Journal Article In: eNeuro, vol. 5, no. 4, pp. 1–14, 2018. @article{Mostert2018a, A relatively new analysis technique, known as neural decoding or multivariate pattern analysis (MVPA), has become increasingly popular for cognitive neuroimaging studies over recent years. These techniques promise to uncover the representational contents of neural signals, as well as the underlying code and the dynamic profile thereof. A field in which these techniques have led to novel insights in particular is that of visual working memory (VWM). In the present study, we subjected human volunteers to a combined VWM/imagery task while recording their neural signals using magnetoencephalography (MEG). We applied multivariate decoding analyses to uncover the temporal profile underlying the neural representations of the memorized item. Analysis of gaze position however revealed that our results were contaminated by systematic eye movements, suggesting that the MEG decoding results from our originally planned analyses were confounded. In addition to the eye movement analyses, we also present the original analyses to highlight how these might have readily led to invalid conclusions. Finally, we demonstrate a potential remedy, whereby we train the decoders on a functional localizer that was specifically designed to target bottom-up sensory signals and as such avoids eye movements. We conclude by arguing for more awareness of the potentially pervasive and ubiquitous effects of eye movement-related confounds. |
Pim Mostert; Sander Bosch; Nadine Dijkstra; Marcel A. J. Gerven; Floris P. Lange Differential temporal dynamics during visual imagery and perception Journal Article In: eLife, vol. 7, pp. 1–16, 2018. @article{Mostert2018, Visual perception and imagery rely on similar representations in the visual cortex. During perception, visual activity is characterized by distinct processing stages, but the temporal dynamics underlying imagery remain unclear. Here, we investigated the dynamics of visual imagery in human participants using magnetoencephalography. Firstly, we show that, compared to perception, imagery decoding becomes significant later and representations at the start of imagery already overlap with later time points. This suggests that during imagery, the entire visual representation is activated at once or that there are large differences in the timing of imagery between trials. Secondly, we found consistent overlap between imagery and perceptual processing around 160 ms and from 300 ms after stimulus onset. This indicates that the N170 gets reactivated during imagery and that imagery does not rely on early perceptual representations. Together, these results provide important insights for our understanding of the neural mechanisms of visual imagery. |
2017 |
Grace Edwards; Petra Vetter; Fiona McGruer; Lucy S. Petro; Lars Muckli Predictive feedback to V1 dynamically updates with sensory input Journal Article In: Scientific Reports, vol. 7, pp. 16538, 2017. @article{Edwards2017a, Predictive coding theories propose that the brain creates internal models of the environment to predict upcoming sensory input. Hierarchical predictive coding models of vision postulate that higher visual areas generate predictions of sensory inputs and feed them back to early visual cortex. In V1, sensory inputs that do not match the predictions lead to amplified brain activation, but does this amplification process dynamically update to new retinotopic locations with eye-movements? We investigated the effect of eye-movements in predictive feedback using functional brain imaging and eye-tracking whilst presenting an apparent motion illusion. Apparent motion induces an internal model of motion, during which sensory predictions of the illusory motion feed back to V1. We observed attenuated BOLD responses to predicted stimuli at the new post-saccadic location in V1. Therefore, pre-saccadic predictions update their retinotopic location in time for post-saccadic input, validating dynamic predictive coding theories in V1. |
Carolyn McGettigan; Kyle Jasmin; Frank Eisner; Zarinah K. Agnew; Oliver J. Josephs; Andrew J. Calder; Rosemary Jessop; Rebecca P. Lawson; Mona Spielmann; Sophie K. Scott You talkin' to me? Communicative talker gaze activates left-lateralized superior temporal cortex during perception of degraded speech Journal Article In: Neuropsychologia, vol. 100, pp. 51–63, 2017. @article{McGettigan2017, Neuroimaging studies of speech perception have consistently indicated a left-hemisphere dominance in the temporal lobes' responses to intelligible auditory speech signals (McGettigan and Scott, 2012). However, there are important communicative cues that cannot be extracted from auditory signals alone, including the direction of the talker's gaze. Previous work has implicated the superior temporal cortices in processing gaze direction, with evidence for predominantly right-lateralized responses (Carlin & Calder, 2013). The aim of the current study was to investigate whether the lateralization of responses to talker gaze differs in an auditory communicative context. Participants in a functional MRI experiment watched and listened to videos of spoken sentences in which the auditory intelligibility and talker gaze direction were manipulated factorially. We observed a left-dominant temporal lobe sensitivity to the talker's gaze direction, in which the left anterior superior temporal sulcus/gyrus and temporal pole showed an enhanced response to direct gaze – further investigation revealed that this pattern of lateralization was modulated by auditory intelligibility. Our results suggest flexibility in the distribution of neural responses to social cues in the face within the context of a challenging speech perception task. |
Anna B. Kuhns; Pascasie L. Dombert; Paola Mengotti; Gereon R. Fink; Simone Vossel Spatial attention, motor intention, and Bayesian cue predictability in the human brain Journal Article In: Journal of Neuroscience, vol. 37, no. 21, pp. 5334–5344, 2017. @article{Kuhns2017, Predictions about upcoming events influence how we perceive and respond to our environment. There is increasing evidence that predictions may be generated based upon previous observations following Bayesian principles, but little is known about the underlying corticalmechanismsandtheir specificity for different cognitive subsystems.Thepresent studyaimedat identifyingcommonanddistinct neural signatures of predictive processing in the spatial attentional and motor intentional system. Twenty-three female and male healthy human volunteers performed two probabilistic cueing tasks with either spatial or motor cues while lying in the fMRI scanner. In these tasks, the percentage of cue validity changed unpredictably over time. Trialwise estimates of cue predictability were derived from a Bayesian observer model of behavioral responses. These estimates were included as parametric regressors for analyzing the BOLD time series. Parametric effects of cue predictability in valid and invalid trials were considered to reflect belief updating by precision-weighted prediction errors. The brain areas exhibiting predictability-dependent effects dissociated between the spatial attention and motor inten- tion task, with the right temporoparietal cortex being involved during spatial attention and the left angular gyrus and anterior cingulate cortex during motor intention. Connectivity analyses revealed that all three areas showed predictability-dependent coupling with the right hippocampus. These results suggest that precision-weighted prediction errors of stimulus locations and motor responses are encoded in distinct brain regions, but that crosstalk with the hippocampusmaybe necessary to integrate new trialwise outcomes in both cognitive systems. |
Jeongmi Lee; Joy J. Geng Idiosyncratic patterns of representational similarity in prefrontal cortex predict attentional performance Journal Article In: Journal of Neuroscience, vol. 37, no. 5, pp. 1257–1268, 2017. @article{Lee2017a, The efficiency of finding an object in a crowded environment depends largely on the similarity of nontargets to the search target. Models of attention theorize that the similarity is determined by representations stored within an "attentional template" held in working memory. However, the degree to which the contents of the attentional template are individually unique and where those idiosyncratic representations are encoded in the brain are unknown. We investigated this problem using representational similarity analysis of human fMRI data to measure the common and idiosyncratic representations of famous face morphs during an identity categorization task; data from the categorization task were then used to predict performance on a separate identity search task. We hypothesized that the idiosyncratic categorical representations of the continuous face morphs would predict their distractability when searching for each target identity. The results identified that patterns of activation in the lateral prefrontal cortex (LPFC) as well as in face-selective areas in the ventral temporal cortex were highly correlated with the patterns of behavioral categorization of face morphs and search performance that were common across subjects. However, the individually unique components of the categorization behavior were reliably decoded only in right LPFC. Moreover, the neural pattern in right LPFC successfully predicted idiosyncratic variability in search performance, such that reaction times were longer when distractors had a higher probability of being categorized as the target identity. These results suggest that the prefrontal cortex encodes individually unique components of categorical representations that are also present in attentional tem-plates for target search. |
Laura Leuchs; Max Schneider; Michael Czisch; Victor I. Spoormaker Neural correlates of pupil dilation during human fear learning Journal Article In: NeuroImage, vol. 147, pp. 186–197, 2017. @article{Leuchs2017, Background: Fear conditioning and extinction are prevailing experimental and etiological models for normal and pathological anxiety. Pupil dilations in response to conditioned stimuli are increasingly used as a robust psychophysiological readout of fear learning, but their neural correlates remain unknown. We aimed at identifying the neural correlates of pupil responses to threat and safety cues during a fear learning task. Methods: Thirty-four healthy subjects underwent a fear conditioning and extinction paradigm with simultaneous functional magnetic resonance imaging (fMRI) and pupillometry. After a stringent preprocessing and artifact rejection procedure, trial-wise pupil responses to threat and safety cues were entered as parametric modulations to the fMRI general linear models. Results: Trial-wise magnitude of pupil responses to both conditioned and safety stimuli correlated positively with activity in dorsal anterior cingulate cortex (dACC), thalamus, supramarginal gyrus and insula for the entire fear learning task, and with activity in the dACC during the fear conditioning phase in particular. Phasic pupil responses did not show habituation, but were negatively correlated with tonic baseline pupil diameter, which decreased during the task. Correcting phasic pupil responses for the tonic baseline pupil diameter revealed thalamic activity, which was also observed in an analysis employing a linear (declining) time modulation. Conclusion: Pupil dilations during fear conditioning and extinction provide useful readouts to track fear learning on a trial-by-trial level, particularly with simultaneous fMRI. Whereas phasic pupil responses reflect activity in brain regions involved in fear learning and threat appraisal, most prominently in dACC, tonic changes in pupil diameter may reflect changes in general arousal. |
Liu D. Liu; Christopher C. Pack The contribution of area MT to visual motion perception depends on training Journal Article In: Neuron, vol. 95, no. 2, pp. 436–446.e3, 2017. @article{Liu2017, Perceptual decisions require the transformation of raw sensory inputs into cortical representations suitable for stimulus discrimination. One of the best-known examples of this transformation involves the middle temporal area (MT) of the primate visual cortex. Area MT provides a robust representation of stimulus motion, and previous work has shown that it contributes causally to performance on motion discrimination tasks. Here we report that the strength of this contribution can be highly plastic: depending on the recent training history, pharmacological inactivation of MT can severely impair motion discrimination, or it can have little detectable influence. Further analysis of neural and behavioral data suggests that training moves the readout of motion information between MT and lower-level cortical areas. These results show that the contribution of individual brain regions to conscious perception can shift flexibly depending on sensory experience. |
Zhong-Xu Liu; Kelly Shen; Rosanna K. Olsen; Jennifer D. Ryan Visual sampling predicts hippocampal activity Journal Article In: Journal of Neuroscience, vol. 37, no. 3, pp. 599–609, 2017. @article{Liu2017c, Eye movements serve to accumulate information from the visual world, contributing to the formation of coherent memory representations that support cognition and behavior. The hippocampus and the oculomotor network are well connected anatomically through an extensive set of polysynaptic pathways. However, the extent to which visual sampling behavior is related to functional responses in the hippocampus during encoding has not been studied directly in human neuroimaging. In the current study, participants engaged in a face processing task while brain responses were recorded with fMRI and eye movements were monitored simultaneously. The number of gaze fixations that a participant made on a given trial was correlated significantly with hippocampal activation such that more fixations were associated with stronger hippocampal activation. Similar results were also found in the fusiform face area, a face-selective perceptual processing region. Notably, the number of fixations was associated with stronger hippocampal activation when the presented faces were novel, but not when the faces were repeated. Increases in fixations during viewing of novel faces also led to larger repetition-related suppression in the hippocampus, indicating that this fixation–hippocampal relationship may reflect the ongoing development of lasting representations. Together, these results provide novel empirical support for the idea that visual exploration and hippocampal binding processes are inherently linked. |
Christopher R. Madan; Esther Fujiwara; Jeremy B. Caplan; Tobias Sommer Emotional arousal impairs association-memory: Roles of amygdala and hippocampus Journal Article In: NeuroImage, vol. 156, pp. 14–28, 2017. @article{Madan2017, Emotional arousal is well-known to enhance memory for individual items or events, whereas it can impair association memory. The neural mechanism of this association memory impairment by emotion is not known: In response to emotionally arousing information, amygdala activity may interfere with hippocampal associative encoding (e.g., via prefrontal cortex). Alternatively, emotional information may be harder to unitize, resulting in reduced availability of extra-hippocampal medial temporal lobe support for emotional than neutral associations. To test these opposing hypotheses, we compared neural processes underlying successful and unsuccessful encoding of emotional and neutral associations. Participants intentionally studied pairs of neutral and negative pictures (Experiments 1–3). We found reduced association-memory for negative pictures in all experiments, accompanied by item-memory increases in Experiment 2. High-resolution fMRI (Experiment 3) indicated that reductions in associative encoding of emotional information are localizable to an area in ventral-lateral amygdala, driven by attentional/salience effects in the central amygdala. Hippocampal activity was similar during both pair types, but a left hippocampal cluster related to successful encoding was observed only for negative pairs. Extra-hippocampal associative memory processes (e.g., unitization) were more effective for neutral than emotional materials. Our findings suggest that reduced emotional association memory is accompanied by increases in activity and functional coupling within the amygdala. This did not disrupt hippocampal association-memory processes, which indeed were critical for successful emotional association memory formation. |
Olivia M. Maynard; Jonathan C. W. Brooks; Marcus R. Munafò; Ute Leonards Neural mechanisms underlying visual attention to health warnings on branded and plain cigarette packs Journal Article In: Addiction, vol. 112, no. 4, pp. 662–672, 2017. @article{Maynard2017, Aims: To (1) test if activation in brain regions related to reward (nucleus accumbens) and emotion (amygdala) differ when branded and plain packs of cigarettes are viewed, (2) test whether these activation patterns differ by smoking status and (3) examine whether activation patterns differ as a function of visual attention to health warning labels on cigarette packs. Design: Cross-sectional observational study combining functional magnetic resonance imaging (fMRI) with eye-tracking. Non-smokers, weekly smokers and daily smokers performed a memory task on branded and plain cigarette packs with pictorial health warnings presented in an event-related design. Setting: Clinical Research and Imaging Centre, University of Bristol, UK. Participants: Non-smokers, weekly smokers and daily smokers (n = 72) were tested. After exclusions, data from 19 non-smokers, 19 weekly smokers and 20 daily smokers were analysed. Measurements: Brain activity was assessed in whole brain analyses and in pre-specified masked analyses in the amygdala and nucleus accumbens. On-line eye-tracking during scanning recorded visual attention to health warnings. Findings: There was no evidence for a main effect of pack type or smoking status in either the nucleus accumbens or amygdala, and this was unchanged when taking account of visual attention to health warnings. However, there was evidence for an interaction, such that we observed increased activation in the right amygdala when viewing branded as compared with plain packs among weekly smokers (P = 0.003). When taking into account visual attention to health warnings, we observed higher levels of activation in the visual cortex in response to plain packaging compared with branded packaging of cigarettes (P = 0.020). Conclusions: Based on functional magnetic resonance imaging and eye-tracking data, health warnings appear to be more salient on ‘plain' cigarette packs than branded packs. |
Yuki Motomura; Ruri Katsunuma; Michitaka Yoshimura; Kazuo Mishima Two days' sleep debt causes mood decline during resting state via diminished amygdala-prefrontal connectivity Journal Article In: Sleep, vol. 40, no. 10, pp. zsx133, 2017. @article{Motomura2017, Study objectives: Sleep debt (SD) has been suggested to evoke emotional instability by diminishing the suppression of the amygdala by the medial prefrontal cortex (MPFC). Here, we investigated how short-term SD affects resting-state functional connectivity between the amygdala and MPFC, self-reported mood, and sleep parameters. Methods: Eighteen healthy adult men aged 29 ± 8.24 years participated in a 2-day sleep control session (SC; time in bed [TIB], 9 hours) and 2-day SD session (TIB, 3 hours). On day 2 of each session, resting-state functional magnetic resonance imaging was performed, followed immediately by measuring self-reported mood on the State-Trait Anxiety Inventory-State subscale (STAI-S). Results: STAI-S score was significantly increased, and functional connectivity between the amygdala and MPFC was significantly decreased in SD compared with SC. Significant correlations were observed between reduced rapid eye movement (REM) sleep and reduced left amygdala-MPFC functional connectivity (FCL_amg-MPFC ) and between reduced FCL_amg-MPFC and increased STAI-S score in SD compared with SC. Conclusions: These findings suggest that reduced MPFC functional connectivity of amygdala activity is involved in mood deterioration under SD, and that REM sleep reduction is involved in functional changes in the corresponding brain regions. Having adequate REM sleep may be important for mental health maintenance. |
Claire K. Naughtin; Kristina Horne; Dana Schneider; Dustin Venini; Ashley York; Paul E. Dux Do implicit and explicit belief processing share neural substrates? Journal Article In: Human Brain Mapping, vol. 38, no. 9, pp. 4760–4772, 2017. @article{Naughtin2017, Humans rely on their ability to infer another person's mental state to understand and predict others' behavior (“theory of mind,” ToM). Multiple lines of research suggest that not only are humans able to consciously process another person's belief state, but also are able to do so implicitly. Here we explored how general implicit belief states are represented in the brain, compared to those substrates involved in explicit ToM processes. Previous work on this topic has yielded conflicting results, and thus, the extent to which the implicit and explicit ToM systems draw on common neural bases is unclear. Participants were presented with “Sally-Anne” type movies in which a protagonist was falsely led to believe a ball was in one location, only for a puppet to later move it to another location in their absence (false-belief condition). In other movies, the protagonist had their back turned the entire time the puppet moved the ball between the two locations, meaning that they had no opportunity to develop any pre-existing beliefs about the scenario (no-belief condition). Using a group of independently localized explicit ToM brain regions, we found greater activity for false-belief trials, relative to no-belief trials, in the right temporoparietal junction, right superior temporal sulcus, precuneus, and left middle prefrontal gyrus. These findings extend upon previous work on the neural bases of implicit ToM by showing substantial overlap between this system and the explicit ToM system, suggesting that both abilities might recruit a common set of mentalizing processes/functional brain regions. |
Veerle Neyens; Rose Bruffaerts; Antonietta G. Liuzzi; Ioannis Kalfas; Ronald Peeters; Emmanuel Keuleers; Rufin Vogels; Simon De Deyne; Gert Storms; Patrick Dupont; Rik Vandenberghe Representation of semantic similarity in the left intraparietal sulcus: Functional magnetic resonance imaging evidence Journal Article In: Frontiers in Human Neuroscience, vol. 11, pp. 402, 2017. @article{Neyens2017, According to a recent study, semantic similarity between concrete entities correlates with the similarity of activity patterns in left middle IPS during category naming. We examined the replicability of this effect under passive viewing conditions, the potential role of visuoperceptual similarity, where the effect is situated compared to regions that have been previously implicated in visuospatial attention, and how it compares to effects of object identity and location. Forty-six subjects participated. Subjects passively viewed pictures from two categories, musical instruments and vehicles. Semantic similarity between entities was estimated based on a concept-feature matrix obtained in more than 1,000 subjects. Visuoperceptual similarity was modeled based on the HMAX model, the AlexNet deep convolutional learning model, and thirdly, based on subjective visuoperceptual similarity ratings. Among the IPS regions examined, only left middle IPS showed a semantic similarity effect. The effect was significant in hIP1, hIP2, and hIP3. Visuoperceptual similarity did not correlate with similarity of activity patterns in left middle IPS. The semantic similarity effect in left middle IPS was significantly stronger than in the right middle IPS and also stronger than in the left or right posterior IPS. The semantic similarity effect was similar to that seen in the angular gyrus. Object identity effects were much more widespread across nearly all parietal areas examined. Location effects were relatively specific for posterior IPS and area 7 bilaterally. To conclude, the current findings replicate the semantic similarity effect in left middle IPS under passive viewing conditions, and demonstrate its anatomical specificity within a cytoarchitectonic reference frame. We propose that the semantic similarity effect in left middle IPS reflects the transient uploading of semantic representations in working memory. |
Abigail L. Noyce; Nishmar Cestero; Samantha W. Michalka; Barbara G. Shinn-Cunningham; David C. Somers Sensory-biased and multiple-demand processing in human lateral frontal cortex Journal Article In: Journal of Neuroscience, vol. 37, no. 36, pp. 8755– 8766, 2017. @article{Noyce2017, The functionality of much of human lateral frontal cortex (LFC) has been characterized as 'multiple demand' as these regions appear to support a broad range of cognitive tasks. In contrast to this domain-general account, recent evidence indicates that portions of LFC are consistently selective for sensory modality. Michalka et al. (2015) reported two bilateral regions that are biased for visual attention, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), interleaved with two bilateral regions that are biased for auditory attention, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). In the present study, we employ functional MRI to examine both the multiple-demand and sensory-bias hypotheses within caudal portions of human LFC (both men and women participated). Using visual and auditory 2-back tasks, we replicate the finding of two bilateral visual-biased and two bilateral auditory-biased LFC regions, corresponding to sPCS & iPCS and to tgPCS & cIFS, and demonstrate high within-subject reliability of these regions over time and across tasks. In addition, we assess multiple demand responsiveness using BOLD signal recruitment and vector space analysis. In both, we find that the two visual-biased regions, sPCS & iPCS, exhibit stronger multiple demand responsiveness than do the auditory-biased LFC regions, tgPCS & cIFS; however, neither reaches the degree of multiple demand responsiveness exhibited by dorsal anterior cingulate/pre-supplemental motor area or by anterior insula. These results reconcile two competing views of LFC by demonstrating the coexistence of sensory specialization and multiple demand functionality, especially in visual-biased LFC structures. |
Lauri Nummenmaa; Lauri Oksama; Enrico Glerean; Jukka Hyönä Cortical circuit for binding object identity and location during multiple-object tracking Journal Article In: Cerebral Cortex, vol. 27, no. 1, pp. 162–172, 2017. @article{Nummenmaa2017, Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants' hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. |
E. Oberwelland; Leonhard Schilbach; I. Barisic; Sarah C. Krall; K. Vogeley; Gereon R. Fink; B. Herpertz-Dahlmann; Kerstin Konrad; Martin Schulte-Rüther Young adolescents with autism show abnormal joint attention network: A gaze contingent fMRI study Journal Article In: NeuroImage: Clinical, vol. 14, pp. 112–121, 2017. @article{Oberwelland2017, Behavioral research has revealed deficits in the development of joint attention (JA) as one of the earliest signs of autism. While the neural basis of JA has been studied predominantly in adults, we recently demonstrated a protracted development of the brain networks supporting JA in typically developing children and adolescents. The present eye-tracking/fMRI study now extends these findings to adolescents with autism. Our results show that in adolescents with autism JA is subserved by abnormal activation patterns in brain areas related to social cognition abnormalities which are at the core of ASD including the STS and TPJ, despite behavioral maturation with no behavioral differences. Furthermore, in the autism group we observed increased neural activity in a network of social and emotional processing areas during interactions with their mother. Moreover, data indicated that less severely affected individuals with autism showed higher frontal activation associated with self-initiated interactions. Taken together, this study provides first-time data of JA in children/adolescents with autism incorporating the interactive character of JA, its reciprocity and motivational aspects. The observed functional differences in adolescents ASD suggest that persistent developmental differences in the neural processes underlying JA contribute to social interaction difficulties in ASD. |
Elaine J. Anderson; Marc S. Tibber; D. Sam Schwarzkopf; Sukhwinder S. Shergill; Emilio Fernandez-Egea; Geraint Rees; Steven C. Dakin Visual population receptive fields in people with schizophrenia have reduced inhibitory surrounds Journal Article In: Journal of Neuroscience, vol. 37, no. 6, pp. 1546–1556, 2017. @article{Anderson2017, People with schizophrenia (SZ) experience abnormal visual perception on a range of visual tasks, which have been linked to abnormal synaptic transmission and an imbalance between cortical excitation and inhibition. However, differences in the underlying architecture of visual cortex neurons, which might explain these visual anomalies, have yet to be reportedin vivoHere, we probed the neural basis of these deficits using fMRI and population receptive field (pRF) mapping to infer properties of visually responsive neurons in people with SZ. We employed a difference-of-Gaussian model to capture the center-surround configuration of the pRF, providing critical information about the spatial scale of the pRFs inhibitory surround. Our analysis reveals that SZ is associated with reduced pRF size in early retinotopic visual cortex, as well as a reduction in size and depth of the inhibitory surround in V1, V2, and V4. We consider how reduced inhibition might explain the diverse range of visual deficits reported in SZ. |
J. Andoh; M. Ferreira; I. R. Leppert; Reiko Matsushita; B. Pike; R. J. Zatorre How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI Journal Article In: NeuroImage, vol. 147, pp. 726–735, 2017. @article{Andoh2017, Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed higher interhemispheric connectivity in Heschl's gyri in rs-ISSS compared with rs-STD, with lower variability across days. The present findings suggest that rs-ISSS may be advantageous for detecting network connectivity in a less noisy environment, and that resting-state studies carried out with standard scanning protocols should consider the potential effects of loud noise on the measured networks. |
Mareike Bacha-Trams; Enrico Glerean; Robin Dunbar; Juha M. Lahnakoski; Elisa Ryyppö; Mikko Sams; Iiro P. Jääskeläinen Differential inter-subject correlation of brain activity when kinship is a variable in moral dilemma Journal Article In: Scientific Reports, vol. 7, pp. 14244, 2017. @article{BachaTrams2017, Previous behavioural studies have shown that humans act more altruistically towards kin. Whether and how knowledge of genetic relatedness translates into differential neurocognitive evaluation of observed social interactions has remained an open question. Here, we investigated how the human brain is engaged when viewing a moral dilemma between genetic vs. non-genetic sisters. During functional magnetic resonance imaging, a movie was shown, depicting refusal of organ donation between two sisters, with subjects guided to believe the sisters were related either genetically or by adoption. Although 90% of the subjects self-reported that genetic relationship was not relevant, their brain activity told a different story. Comparing correlations of brain activity across all subject pairs between the two viewing conditions, we found significantly stronger inter-subject correlations in insula, cingulate, medial and lateral prefrontal, superior temporal, and superior parietal cortices, when the subjects believed that the sisters were genetically related. Cognitive functions previously associated with these areas include moral and emotional conflict regulation, decision making, and mentalizing, suggesting more similar engagement of such functions when observing refusal of altruism from a genetic sister. Our results show that mere knowledge of a genetic relationship between interacting persons robustly modulates social cognition of the perceiver. |
Anna K. Bonkhoff; Eckart Zimmermann; Gereon R. Fink Veridical stimulus localization is linked to human area V5/MT+ activity Journal Article In: NeuroImage, vol. 156, pp. 377–387, 2017. @article{Bonkhoff2017, How the brain represents visual space is an unsolved mystery. Spatial localization becomes particularly challenging when visual information processing is briefly disrupted, as in the case of saccadic eye movements, blinks, or visual masks. As we have recently reported, a compression of visual space, illustrated by displacements of shortly flashed stimuli, can be observed in the temporal vicinity of masking stimuli during ocular fixation (Zimmermann et al., 2013). We here aimed at investigating the neural mechanisms underlying these displacements using functional magnetic resonance imaging. On the behavioral level, we detected significant stimulus displacement when visual masks were simultaneously presented. At the neural level, we observed decreased human motion complex V5/MT+ activation associated with these displacements: When comparing trials with a perceived stimulus shift in space to trials of veridical perception of stimulus localization, human V5/MT+ was significantly less activated although no differences in perceived motion can account for this. Data suggest an important role of human V5/MT+ in the process of spatial localization of briefly presented objects and thus extend current concepts of the functions of human V5/MT+. |
Rodrigo M. Braga; Randy L. Buckner Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity Journal Article In: Neuron, vol. 95, no. 2, pp. 457–471.e5, 2017. @article{Braga2017, Certain organizational features of brain networks present in the individual are lost when central tendencies are examined in the group. Here we investigated the detailed network organization of four individuals each scanned 24 times using MRI. We discovered that the distributed network known as the default network is comprised of two separate networks possessing adjacent regions in eight or more cortical zones. A distinction between the networks is that one is coupled to the hippocampal formation while the other is not. Further exploration revealed that these two networks were juxtaposed with additional networks that themselves fractionate group-defined networks. The collective networks display a repeating spatial progression in multiple cortical zones, suggesting that they are embedded within a broad macroscale gradient. Regions contributing to the newly defined networks are spatially variable across individuals and adjacent to distinct networks, raising issues for network estimation in group-averaged data and applied endeavors, including targeted neuromodulation. Braga and Buckner examine the detailed organization of brain networks within individual people. They discovered that multiple closely juxtaposed cortical regions form parallel distributed networks. Separate large-scale networks may emerge from a common organizing principle. |
Donna J. Bridge; Neal J. Cohen; Joel L. Voss Distinct hippocampal versus frontoparietal network contributions to retrieval and memory-guided exploration Journal Article In: Journal of Cognitive Neuroscience, vol. 29, no. 8, pp. 1324–1338, 2017. @article{Bridge2017, Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. After retrieval of one object in a multiobject array, viewing was strategically directed away from the retrieved object toward nonretrieved objects, such that exploration was directed toward to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval, whereas frontoparietal activity varied with strategic viewing patterns deployed after retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration occurred than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations. |
Laura Cacciamani; Erica Wager; Mary A. Peterson; Paige E. Scalf Age-related changes in perirhinal cortex sensitivity to configuration and part familiarity and connectivity to visual cortex Journal Article In: Frontiers in Aging Neuroscience, vol. 9, pp. 291, 2017. @article{Cacciamani2017, The perirhinal cortex (PRC) is a medial temporal lobe (MTL) structure known to be involved in assessing whether an object is familiar (i.e., meaningful) or novel. Recent evidence shows that the PRC is sensitive to the familiarity of both whole object configurations and their parts, and suggests the PRC may modulate part familiarity responses in V2. Here, using functional magnetic resonance imaging (fMRI), we investigated age-related decline in the PRC's sensitivity to part/configuration familiarity and assessed its functional connectivity to visual cortex in young and older adults. Participants categorized peripherally presented silhouettes as familiar ("real-world") or novel. Part/configuration familiarity was manipulated via three silhouette configurations: Familiar (parts/configurations familiar), Control Novel (parts/configurations novel), and Part-Rearranged Novel (parts familiar, configurations novel). "Real-world" judgments were less accurate than "novel" judgments, although accuracy did not differ between age groups. The fMRI data revealed differential neural activity, however: In young adults, a linear pattern of activation was observed in left hemisphere (LH) PRC, with Familiar > Control Novel > Part-Rearranged Novel. Older adults did not show this pattern, indicating age-related decline in the PRC's sensitivity to part/configuration familiarity. A functional connectivity analysis revealed a significant coupling between the PRC and V2 in the LH in young adults only. Older adults showed a linear pattern of activation in the temporopolar cortex (TPC), but no evidence of TPC-V2 connectivity. This is the first study to demonstrate age-related decline in the PRC's representations of part/configuration familiarity and its covariance with visual cortex. |
Jan Willem Gee; Olympia Colizoli; Niels A. Kloosterman; Tomas Knapen; Sander Nieuwenhuis; Tobias H. Donner Dynamic modulation of decision biases by brainstem arousal systems Journal Article In: eLife, vol. 6, pp. 1–36, 2017. @article{Gee2017, Decision-makers often arrive at different choices when faced with repeated presentations of the same evidence. Variability of behavior is commonly attributed to noise in the brain's decision-making machinery. We hypothesized that phasic responses of brainstem arousal systems are a significant source of this variability. We tracked pupil responses (a proxy of phasic arousal) during sensory-motor decisions in humans, across different sensory modalities and task protocols. Large pupil responses generally predicted a reduction in decision bias. Using fMRI, we showed that the pupil-linked bias reduction was (i) accompanied by a modulation of choice-encoding pattern signals in parietal and prefrontal cortex and (ii) predicted by phasic, pupil-linked responses of a number of neuromodulatory brainstem centers involved in the control of cortical arousal state, including the noradrenergic locus coeruleus. We conclude that phasic arousal suppresses decision bias on a trial-by-trial basis, thus accounting for a significant component of the variability of choice behavior. |
João Valente Duarte; Gabriel Nascimento Costa; Ricardo Martins; Miguel Castelo-Branco Pivotal role of hMT+ in long-range disambiguation of interhemispheric bistable surface motion Journal Article In: Human Brain Mapping, vol. 38, no. 10, pp. 4882–4897, 2017. @article{Duarte2017, It remains an open question whether long-range disambiguation of ambiguous surface motion can be achieved in early visual cortex or instead in higher level regions, which concerns object/surface segmentation/integration mechanisms. We used a bistable moving stimulus that can be perceived as a pattern comprehending both visual hemi-fields moving coherently downward or as two widely segregated nonoverlapping component objects (in each visual hemi-field) moving separately inward. This paradigm requires long-range integration across the vertical meridian leading to interhemispheric binding. Our fMRI study (n = 30) revealed a close relation between activity in hMT+ and perceptual switches involving interhemispheric segregation/integration of motion signals, crucially under nonlocal conditions where components do not overlap and belong to distinct hemispheres. Higher signal changes were found in hMT+ in response to spatially segregated component (incoherent) percepts than to pattern (coherent) percepts. This did not occur in early visual cortex, unlike apparent motion, which does not entail surface segmentation. We also identified a role for top–down mechanisms in state transitions. Deconvolution analysis of switch-related changes revealed prefrontal, insula, and cingulate areas, with the right superior parietal lobule (SPL) being particularly involved. We observed that directed influences could emerge either from left or right hMT+ during bistable motion integration/segregation. SPL also exhibited significant directed functional connectivity with hMT+, during perceptual state maintenance (Granger causality analysis). Our results suggest that long-range interhemispheric binding of ambiguous motion representations mainly reflect bottom–up processes from hMT+ during perceptual state maintenance. In contrast, state transitions maybe influenced by high-level regions such as the SPL. |
Joel Reithler; Judith C. Peters; Rainer Goebel In: NeuroImage, vol. 152, pp. 551–562, 2017. @article{Reithler2017, Visual scenes are initially processed via segregated neural pathways dedicated to either of the two visual hemifields. Although higher-order visual areas are generally believed to utilize invariant object representations (abstracted away from features such as stimulus position), recent findings suggest they retain more spatial information than previously thought. Here, we assessed the nature of such higher-order object representations in human cortex using high-resolution fMRI at 7T, supported by corroborative 3T data. We show that multi-voxel activation patterns in both the contra- and ipsilateral hemisphere can be exploited to successfully classify the object category of unilaterally presented stimuli. Moreover, robustly identified rank order-based response profiles demonstrated a strong contralateral bias which frequently outweighed object category preferences. Finally, we contrasted different combinatorial operations to predict the responses during bilateral stimulation conditions based on responses to their constituent unilateral elements. Results favored a max operation predominantly reflecting the contralateral stimuli. The current findings extend previous work by showing that configuration-dependent modulations in higher-order visual cortex responses as observed in single unit activity have a counterpart in human neural population coding. They furthermore corroborate the emerging view that position coding is a fundamental functional characteristic of ventral visual stream processing. |
Christiane S. Rohr; Sarah A. Vinette; Kari A. L. Parsons; Ivy Y. K. Cho; Dennis Dimond; Alina Benischek; Catherine Lebel; Deborah Dewey; Signe Bray Functional connectivity of the dorsal attention network predicts selective attention in 4–7 year-old girls Journal Article In: Cerebral Cortex, vol. 27, no. 9, pp. 4350–4360, 2017. @article{Rohr2017, Early childhood is a period of profound neural development and remodeling during which attention skills undergo rapid maturation. Attention networks have been extensively studied in the adult brain, yet relatively little is known about changes in early childhood, and their relation to cognitive development. We investigated the association between age and functional connectivity (FC) within the dorsal attention network (DAN) and the association between FC and attention skills in early childhood. Functional magnetic resonance imaging data was collected during passive viewing in 44 typically developing female children between 4 and 7 years whose sustained, selective, and executive attention skills were assessed. FC of the intraparietal sulcus (IPS) and the frontal eye fields (FEF) was computed across the entire brain and regressed against age. Age was positively associated with FC between core nodes of the DAN, the IPS and the FEF, and negatively associated with FC between the DAN and regions of the default-mode network. Further, controlling for age, FC between the IPS and FEF was significantly associated with selective attention. These findings add to our understanding of early childhood development of attention networks and suggest that greater FC within the DAN is associated with better selective attention skills. |
Verena Schuster; Peer Herholz; Kristin M. Zimmermann; Stefan Westermann; Stefan Frässle; Andreas Jansen Comparison of fMRI paradigms assessing visuospatial processing: Robustness and reproducibility Journal Article In: PLoS ONE, vol. 12, no. 10, pp. 1–25, 2017. @article{Schuster2017, The development of brain imaging techniques, in particular functional magnetic resonance imaging (fMRI), made it possible to non-invasively study the hemispheric lateralization of cognitive brain functions in large cohorts. Comprehensive models of hemispheric lateralization are, however, still missing and should not only account for the hemispheric specialization of individual brain functions, but also for the interactions among different lateralized cognitive processes (e.g., language and visuospatial processing). This calls for robust and reliable paradigms to study hemispheric lateralization for various cognitive functions. While numerous reliable imaging paradigms have been developed for language, which represents the most prominent left-lateralized brain function, the reliability of imaging paradigms investigating typically right-lateralized brain functions, such as visuospatial processing, has received comparatively less attention. In the present study, we aimed to establish an fMRI paradigm that robustly and reliably identifies right-hemispheric activation evoked by visuospatial processing in individual subjects. In a first study, we therefore compared three frequently used paradigms for assessing visuospatial processing and evaluated their utility to robustly detect right-lateralized brain activity on a single-subject level. In a second study, we then assessed the test-retest reliability of the so-called Landmark task–the paradigm that yielded the most robust results in study 1. At the single-voxel level, we found poor reliability of the brain activation underlying visuospatial attention. This suggests that poor signal-to-noise ratios can become a limiting factor for test-retest reliability. This represents a common detriment of fMRI paradigms investigating visuospatial attention in general and therefore highlights the need for careful considerations of both the possibilities and limitations of the respective fMRI paradigm–in particular, when being interested in effects at the single-voxel level. Notably, however, when focusing on the reliability of measures of hemispheric lateralization (which was the main goal of study 2), we show that hemispheric dominance (quantified by the lateralization index, LI, with |LI| >0.4) of the evoked activation could be robustly determined in more than 62% and, if considering only two categories (i.e., left, right), in more than 93% of our subjects. Furthermore, the reliability of the lateralization strength (LI) was “fair” to “good”. In conclusion, our results suggest that the degree of right-hemispheric dominance during visuospatial processing can be reliably determined using the Landmark task, both at the group and single-subject level, while at the same time stressing the need for future refinements of experimental paradigms and more sophisticated fMRI data acquisition techniques. |
Annie L. Shelton; Kim M. Cornish; Meaghan Clough; Sanuji Gajamange; Scott Kolbe; Joanne Fielding Disassociation between brain activation and executive function in fragile X premutation females Journal Article In: Human Brain Mapping, vol. 38, no. 2, pp. 1056–1067, 2017. @article{Shelton2017, Executive dysfunction has been demonstrated among premutation (PM) carriers (55-199 CGG repeats) of the Fragile X mental retardation 1 (FMR1) gene. Further, alterations to neural activation patterns have been reported during memory and comparison based functional magnetic resonance imaging (fMRI) tasks in these carriers. For the first time, the relationships between fMRI neural activation during an interleaved ocular motor prosaccade/antisaccade paradigm, and concurrent task performance (saccade measures of latency, accuracy and error rate) in PM females were examined. Although no differences were found in whole brain activation patterns, regions of interest (ROI) analyses revealed reduced activation in the right ventrolateral prefrontal cortex (VLPFC) during antisaccade trials for PM females. Further, a series of divergent and group specific relationships were found between ROI activation and saccade measures. Specifically, for control females, activation within the right VLPFC and supramarginal gyrus correlated negatively with antisaccade latencies, while for PM females, activation within these regions was found to negatively correlate with antisaccade accuracy and error rate (right VLPFC only). For control females, activation within frontal and supplementary eye fields and bilateral intraparietal sulci correlated with prosaccade latency and accuracy; however, no significant prosaccade correlations were found for PM females. This exploratory study extends previous reports of altered prefrontal neural engagement in PM carriers, and clearly demonstrates dissociation between control and PM females in the transformation of neural activation into overt measures of executive dysfunction. |
Maryam Vaziri-Pashkam; Yaoda Xu Goal-directed visual processing differentially impacts human ventral and dorsal visual representations Journal Article In: Journal of Neuroscience, vol. 37, no. 36, pp. 8767–8782, 2017. @article{VaziriPashkam2017, Recent studies have challenged the ventral/“what” and dorsal/“where” two-visual-processing-pathway view by showing the existence of “what”and“where”information in both pathways. Is thetwo-pathwaydistinction still valid? Here,weexaminedhowgoal-directed visual information processing may differentially impact visual representations in these two pathways. Using fMRI and multivariate pattern analysis, in three experiments onhumanparticipants (57% females), by manipulating whether color or shape was task-relevant andhow they were conjoined, we examined shape-based object category decoding in occipitotemporal and parietal regions.Wefound that object category representations in all the regions examined were influenced by whether or not object shape was task-relevant. This task effect, however,tendedto decrease as task-relevantandirrelevant featuresweremoreintegrated, reflecting thewell-knownobject-based feature encoding. Interestingly, task relevance played a relatively minor role in driving the representational structures of early visual and ventral object regions. They were driven predominantly by variations in object shapes. In contrast, the effect of task was much greater in dorsal than ventral regions, with object category and task relevance both contributing significantly to the representational structures of the dorsal regions. These results showed that, whereas visual representations in the ventral pathway are more invariant and reflect “what an object is,” those in the dorsal pathway are more adaptive and reflect “what we do with it.” Thus, despite the existence of “what” and “where” information in both visual processing pathways, the two pathways may still differ fundamentally in their roles in visual infor- mation representation. |
Alex L. White; Erik Runeson; John Palmer; Zachary R. Ernst; Geoffrey M. Boynton Evidence for unlimited capacity processing of simple features in visual cortex Journal Article In: Journal of Vision, vol. 17, no. 6, pp. 19, 2017. @article{White2017a, Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level-dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. |
Nonie J. Finlayson; Xiaoli Zhang; Julie D. Golomb Differential patterns of 2D location versus depth decoding along the visual hierarchy Journal Article In: NeuroImage, vol. 147, pp. 507–516, 2017. @article{Finlayson2017, Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy. |
Marc Galanter; Zoran Josipovic; Helen Dermatis; Jochen Weber; Mary Alice Millard An initial fMRI study on neural correlates of prayer in members of Alcoholics Anonymous Journal Article In: American Journal of Drug and Alcohol Abuse, vol. 43, no. 1, pp. 44–54, 2017. @article{Galanter2017, Background: Many individuals with alcohol-use disorders who had experienced alcohol craving before joining Alcoholics Anonymous (AA) report little or no craving after becoming long-term members. Their use of AA prayers may contribute to this. Neural mechanisms underlying this process have not been delineated. Objective: To define experiential and neural correlates of diminished alcohol craving followingAA prayers amongmembers with long-termabstinence. Methods: Twenty AAmembers with long-term abstinence participated. Self-report measures and functional magnetic resonance imaging of differential neural response to alcohol-craving-inducing images were obtained in three conditions: after reading of AA prayers, after reading irrelevant news, and with passive viewing. Random-effects robust regressions were computed for the main effect (prayer > passive + news) and for estimating the correlations between themain effect and the self-report measures. Results: Compared to the other two conditions, the prayer condition was characterized by: less self-reported craving; increased activation in left-anterior middle frontal gyrus, left superior parietal lobule, bilateral precuneus, and bilateral posterior middle temporal gyrus. Craving following prayer was inversely correlated with activation in brain areas associated with self-referential processing and the default mode network, and with characteristics reflecting AA program involvement. Conclusion:AA members' prayer was asso- ciated with a relative reduction in self-reported craving and with concomitant engagement of neural mechanisms that reflect control of attention and emotion. These findings suggest neural processes underlying the apparent effectiveness of AA prayer. |
Stephan Geuter; Sabrina Boll; Falk Eippert; Christian Büchel Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula Journal Article In: eLife, vol. 6, pp. 1–22, 2017. @article{Geuter2017, <p>The computational principles by which the brain creates a painful experience from nociception are still unknown. Classic theories suggest that cortical regions either reflect stimulus intensity or additive effects of intensity and expectations, respectively. By contrast, predictive coding theories provide a unified framework explaining how perception is shaped by the integration of beliefs about the world with mismatches resulting from the comparison of these believes against sensory input. Using functional magnetic resonance imaging during a probabilistic heat pain paradigm, we investigated which computations underlie pain perception. Skin conductance, pupil dilation, and anterior insula responses to cued pain stimuli strictly followed the response patterns hypothesized by the predictive coding model, whereas posterior insula encoded stimulus intensity. This novel functional dissociation of pain processing within the insula together with previously observed alterations in chronic pain offer a novel interpretation of aberrant pain processing as disturbed weighting of predictions and prediction errors.</p> |
Evan M. Gordon; Timothy O. Laumann; Adrian W. Gilmore; Dillan J. Newbold; Deanna J. Greene; Jeffrey J. Berg; Mario Ortega; Catherine Hoyt-Drazen; Caterina Gratton; Haoxin Sun; Jacqueline M. Hampton; Rebecca S. Coalson; Annie L. Nguyen; Kathleen B. McDermott; Joshua S. Shimony; Abraham Z. Snyder; Bradley L. Schlaggar; Steven E. Petersen; Steven M. Nelson; Nico U. F. Dosenbach Precision functional mapping of individual human brains Journal Article In: Neuron, vol. 95, no. 4, pp. 791–807.e7, 2017. @article{Gordon2017, Human functional MRI (fMRI) research primarily focuses on analyzing data averaged across groups, which limits the detail, specificity, and clinical utility of fMRI resting-state functional connectivity (RSFC) and task-activation maps. To push our understanding of functional brain organization to the level of individual humans, we assembled a novel MRI dataset containing 5 hr of RSFC data, 6 hr of task fMRI, multiple structural MRIs, and neuropsychological tests from each of ten adults. Using these data, we generated ten high-fidelity, individual-specific functional connectomes. This individual-connectome approach revealed several new types of spatial and organizational variability in brain networks, including unique network features and topologies that corresponded with structural and task-derived brain features. We are releasing this highly sampled, individual-focused dataset as a resource for neuroscientists, and we propose precision individual connectomics as a model for future work examining the organization of healthy and diseased individual human brains. |
Joseph C. Griffis; Abdurahman S. Elkhetali; Wesley K. Burge; Richard H. Chen; Anthony D. Bowman; Jerzy P. Szaflarski; Kristina M. Visscher Retinotopic patterns of functional connectivity between V1 and large-scale brain networks during resting fixation Journal Article In: NeuroImage, vol. 146, pp. 1071–1083, 2017. @article{Griffis2017, Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. |
Erno J. Hermans; Jonathan W. Kanen; Arielle Tambini; Guillén Fernández; Lila Davachi; Elizabeth A. Phelps In: Cerebral Cortex, vol. 27, no. 5, pp. 3028–3041, 2017. @article{Hermans2017, After encoding, memories undergo a process of consolidation that determines long-term retention. For conditioned fear, animal models postulate that consolidation involves reactivations of neuronal assemblies supporting fear learning during postlearning " offline " periods. However, no human studies to date have investigated such processes, particularly in relation to long-term expression of fear. We tested 24 participants using functional MRI on 2 consecutive days in a fear conditioning paradigm involving 1 habituation block, 2 acquisition blocks, and 2 extinction blocks on day 1, and 2 re-extinction blocks on day 2. Conditioning blocks were preceded and followed by 4.5-min rest blocks. Strength of spontaneous recovery of fear on day 2 served as a measure of long-term expression of fear. Amygdala connectivity primarily with hippocampus increased progressively during postacquisition and postextinction rest on day 1. Intraregional multi-voxel correlation structures within amygdala and hippocampus sampled during a block of differential fear conditioning furthermore persisted after fear learning. Critically, both these main findings were stronger in participants who exhibited spontaneous recovery 24 h later. Our findings indicate that neural circuits activated during fear conditioning exhibit persistent postlearning activity that may be functionally relevant in promoting consolidation of the fear memory. |
Jaakko Hotta; Jukka Saari; Miika Koskinen; Yevhen Hlushchuk; Nina Forss; Riitta Hari Abnormal brain responses to action observation in complex regional pain syndrome Journal Article In: Journal of Pain, vol. 18, no. 3, pp. 255–265, 2017. @article{Hotta2017, Patients with complex regional pain syndrome (CRPS) display various abnormalities in central motor function, and their pain is intensified when they perform or just observe motor actions. In this study, we examined the abnormalities of brain responses to action observation in CRPS. We analyzed 3-T functional magnetic resonance images from 13 upper limb CRPS patients (all female, ages 31–58 years) and 13 healthy, age- and sex-matched control subjects. The functional magnetic resonance imaging data were acquired while the subjects viewed brief videos of hand actions shown in the first-person perspective. A pattern-classification analysis was applied to characterize brain areas where the activation pattern differed between CRPS patients and healthy subjects. Brain areas with statistically significant group differences (q < .05, false discovery rate-corrected) included the hand representation area in the sensorimotor cortex, inferior frontal gyrus, secondary somatosensory cortex, inferior parietal lobule, orbitofrontal cortex, and thalamus. Our findings indicate that CRPS impairs action observation by affecting brain areas related to pain processing and motor control. Perspective This article shows that in CRPS, the observation of others' motor actions induces abnormal neural activity in brain areas essential for sensorimotor functions and pain. These results build the cerebral basis for action-observation impairments in CRPS. |
Su Keun Jeong; Yaoda Xu Task-context-dependent linear representation of multiple visual objects in human parietal cortex Journal Article In: Journal of Cognitive Neuroscience, vol. 29, no. 10, pp. 1778–1789, 2017. @article{Jeong2017, A host of recent studies have reported robust representations of visual object information in the human parietal cortex, similar to those found in ventral visual cortex. In ventral visual cortex, both monkey neurophysiology and human fMRI studies showed that the neural representation ofa pair ofunrelated objects can be approximated by the averaged neural representation of the constituent objects shown in isolation. In this study, we examined whether such a linear relationship between objects exists for object representations in the human parietal cortex. Using fMRI and multivoxel pattern analysis, we examined object representations in human inferior and superior intraparietal sulcus, two parietal regions previously implicated in visual object selection and encoding, respectively. We also examined responses from the lateral occipital region, a ventral object processing area. We obtained fMRI response patterns to object pairs and their constituent objects shown in isolation while participants viewed these objects and performed a 1-back repetition detection task. By measuring fMRI response pattern correlations, we found that all three brain regions contained representations for both single object and object pairs. In the lateral occipital region, the representation for a pair ofobjects could be reliably approximated by the average representation of its constituent objects shown in isolation, replicating previous findings in ventral visual cortex. Such a simple linear relationship, however, was not observed in either parietal region examined. Nevertheless, when we equated the amount of task information present by examining responses from two pairs of objects, we found that representations for the average of two object pairs were indistinguishable in both parietal regions from the average of another two object pairs containing the same four component objects but with a different pairing of the objects (i.e., the average of AB and CD vs. that of AD and CB). Thus, when task information was held consistent, the same linear relationship may govern how multiple independent objects are represented in the human parietal cortex as it does in ventral visual cortex. These findings show that object and task representations coexist in the human parietal cortex and characterize one significant dif- ference of how visual information may be represented in ventral visual and parietal regions. |
Kitty Z. Xu; Brian A. Anderson; Erik E. Emeric; Anthony W. Sali; Veit Stuphorn; Steven Yantis; Susan M. Courtney Neural basis of cognitive control over movement inhibition: Human fMRI and primate electrophysiology evidence Journal Article In: Neuron, vol. 96, no. 6, pp. 1447–1458.e6, 2017. @article{Xu2017, Executive control involves the ability to flexibly inhibit or change an action when it is contextually inappropriate. Using the complimentary techniques of human fMRI and monkey electrophysiology in a context-dependent stop signal task, we found a functional double dissociation between the right ventrolateral prefrontal cortex (rVLPFC) and the bi-lateral frontal eye field (FEF). Different regions of rVLPFC were associated with context-based signal meaning versus intention to inhibit a response, while FEF activity corresponded to success or failure of the response inhibition regardless of the stimulus response mapping or the context. These results were validated by electrophysiological recordings in rVLPFC and FEF from one monkey. Inhibition of a planned behavior is therefore likely not governed by a single brain system as had been previously proposed, but instead depends on two distinct neural processes involving different sub-regions of the rVLPFC and their interactions with other motor-related brain regions. Xu et al. present a rare combination of complementary evidence from human fMRI and primate neurophysiology, demonstrating that response inhibition is not directly accomplished by the rVLPFC, but instead requires multiple, distinct rVLPFC networks involving attention and contextual stimulus interpretation. |
C. J. Aine; H. J. Bockholt; J. R. Bustillo; J. M. Cañive; A. Caprihan; C. Gasparovic; F. M. Hanlon; J. M. Houck; R. E. Jung; J. Lauriello; J. Liu; A. R. Mayer; N. I. Perrone-Bizzozero; S. Posse; Julia M. Stephen; J. A. Turner; V. P. Clark; Vince D. Calhoun Multimodal neuroimaging in schizophrenia: Description and dissemination Journal Article In: Neuroinformatics, vol. 15, no. 4, pp. 343–364, 2017. @article{Aine2017, In this paper we describe an open-access collection ofmultimodal neuroimaging data in schizophrenia for release to the community. Data were acquired from approximately 100 patients with schizophrenia and 100 age-matched controls during rest as well as several task activation paradigms targeting a hierarchy of cognitive constructs. Neuroimaging data include structural MRI, functional MRI, diffusion MRI, MR spectroscopic imaging, and magnetoencephalography. For three of the hypothesis-driven projects, task activation paradigms were acquired on subsets of~200 volunteers which examined a range of sensory and cognitive processes (e.g., auditory sensory gating, auditory/visual multisensory integration, visual transverse patterning). Neuropsychological data were also acquired and genetic material via saliva samples were collected from most of the participants and have been typed for both genome-wide polymorphism data as well as genome-wide methylation data. Some results are also present- ed from the individual studies as well as from our data-driven multimodal analyses (e.g., multimodal examinations of network structure and network dynamics and multitask fMRI data analysis across projects). All data will be released through the Mind Research Network's collaborative informatics and neuroimaging suite (COINS). |
Thomas Meindertsma; Niels A. Kloosterman; Guido Nolte; Andreas K. Engel; Tobias H. Donner Multiple transient signals in human visual cortex associated with an elementary decision Journal Article In: Journal of Neuroscience, vol. 37, no. 23, pp. 5744–5757, 2017. @article{Meindertsma2017, The cerebral cortex continuously undergoes changes in its state, which are manifested in transient modulations of the cortical power spectrum. Cortical state changes also occur at full wakefulness and during rapid cognitive acts, such as perceptual decisions. Previous studies found a global modulation of beta-band (12–30 Hz) activity in human and monkey visual cortex during an elementary visual decision: reporting the appearance or disappearance of salient visual targets surrounded by a distractor. The previous studies disentangled neither the motor action associated with behavioral report nor other secondary processes, such as arousal, from perceptual decision processing per se. Here, we used magnetoencephalography in humans to pinpoint the factors underlying the beta-band modulation.We found that disappearances of a salient target were associated with beta-band suppression, and target reappearances with beta-band enhancement. This was true for both overt behavioral reports (immediate button presses) and silent counting of the perceptual events. This finding indicates that the beta-band modulation was unrelated to the execution of the motor act associated with a behavioral report of the perceptual decision. Further, changes in pupil-linked arousal, fixational eye movements, or gamma-band responses were not necessary for the beta-band modulation. Together, our results suggest that the beta-band modulation was a top-down signal associated with the process of converting graded perceptual signals into a categorical format underlying flexible behavior. This signal may have been fed back from brain regions involved in decision processing to visual cortex, thus enforcing a “decision-consistent” cortical state. |
Sorato Minami; Kaoru Amano Illusory jitter perceived at the frequency of alpha oscillations Journal Article In: Current Biology, vol. 27, no. 15, pp. 1–13, 2017. @article{Minami2017, Neural oscillations, such as alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–100 Hz), are widespread across cortical areas, and their possible functional roles include feature binding [1], neuronal communication [2, 3], and memory [1, 4]. The most prominent signal among these neural oscillations is the alpha oscillation. Although accumulating evidence suggests that alpha oscillations correlate with various aspects of visual processing [5–18], the number of studies proving their causal contribution in visual perception is limited [11, 16–18]. Here we report that illusory visual vibrations are consciously experienced at the frequency of intrinsic alpha oscillations. We employed an illusory jitter perception termed the motion-induced spatial conflict [19] that originates from the cyclic interaction between motion and shape processing. Comparison between the perceived frequency of illusory jitter and the peak alpha frequency (PAF) measured using magnetoencephalography (MEG) revealed that the inter- and intra-participant variations of the PAF are mirrored by an illusory jitter perception. More crucially, psychophysical and MEG measurements during amplitude-modulated current stimulation [20] showed that the PAF can be artificially manipulated, which results in a corresponding change in the perceived jitter frequency. These results suggest the causal contribution of neural oscillations at the alpha frequency in creating temporal characteristics of visual perception. Our results suggest that cortical areas, dorsal and ventral visual areas in this case, are interacting at the frequency of alpha oscillations [2, 3, 21–27]. |
Malcolm Proudfoot; Gustavo Rohenkohl; Andrew Quinn; Giles L. Colclough; Joanne Wuu; Kevin Talbot; Mark W. Woolrich; Michael Benatar; Anna C. Nobre; Martin R. Turner Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis Journal Article In: Human Brain Mapping, vol. 38, pp. 237–254, 2017. @article{Proudfoot2017, Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15–30 Hz) power. Cortical beta-band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS-associated gene mutations were compared with age-similar healthy control groups. Augmented beta desynchronization was observed in both contra- and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. |
Tzvetan Popov; Sabine Kastner; Ole Jensen FEF-controlled alpha delay activity precedes stimulus-induced gamma-band activity in visual cortex Journal Article In: Journal of Neuroscience, vol. 37, no. 15, pp. 4117–4127, 2017. @article{Popov2017, Recent findings in the visual system of nonhuman primates have demonstrated an important role of gamma-band activity (40–100 Hz) in the feedforward flow of sensory information, whereas feedback control appears to be established dynamically by oscillations in the alpha (8–13 Hz) and beta (13–18 Hz) bands (van Kerkoerle et al., 2014; Bastos et al., 2015). It is not clear, however, how alpha oscillations are controlled and how they interact with the flow of visual information mediated by gamma-band activity. Using noninvasive human MEG recordings in subjects performing a visuospatial attention task, we show that fluctuations in alpha power during a delay period in a spatial attention task preceded subsequent stimulus-driven gamma-band activity. Importantly, these interactions correlated with behavioral performance. Using Granger analysis, we further show that the right frontal-eye field (rFEF) exerted feedback control of the visual alpha oscillations. Our findings suggest that alpha oscillations controlled by the FEF route cortical information flow by modulating gamma-band activity. |
Theresa Wildegger; Freek Ede; Mark W. Woolrich; Céline R. Gillebert; Anna C. Nobre Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity Journal Article In: Journal of Neurophysiology, vol. 117, no. 3, pp. 1385–1394, 2017. @article{Wildegger2017, Preparatory modulations of cortical alpha-band oscillations are a reliable index of the voluntary allocation of covert spatial attention. It is currently unclear whether attentional cues containing information about a target's identity (such as its visual orientation), in addition to its location, might additionally shape preparatory alpha modulations. Here, we explore this question by directly comparing spatial and feature-based attention in the same visual detection task while recording brain activity using magneto-encephalography (MEG). At the behavioural level, preparatory feature-based and spatial attention cues both improved performance, and did so independently of each other. Using MEG, we replicated robust alpha lateralisation following spatial cues: in preparation for a visual target, alpha power decreased contralaterally, and increased ipsilaterally to the attended location. Critically, however, preparatory alpha lateralisation was not significantly modulated by predictions regarding target identity, as carried via the behaviourally effective feature-based attention cues. Furthermore, non-lateralised alpha power during the cue-target interval did not differentiate between uninformative cues and cues carrying feature-based predictions either. Based on these results we propose that preparatory alpha modulations play a role in the gating of information between spatially segregated cortical regions, and are therefore particularly well suited for spatial gating of information. |
Tobias Staudigl; Elisabeth Hartl; Soheyl Noachtar; Christian F. Doeller; Ole Jensen Saccades are phase-locked to alpha oscillations in the occipital and medial temporal lobe enhance memory encoding Journal Article In: PLoS Biology, vol. 15, no. 12, pp. e2003404, 2017. @article{Staudigl2017, Efficient sampling of visual information requires a coordination of eye movements and ongoing brain oscillations. Using intracranial and MEG recordings, we show that saccades are locked to the phase of visual alpha oscillations, and that this coordination supports mnemonic encoding of visual scenes. Furthermore, parahippocampal and retrosplenial cortex involvement in this coordination reflects effective vision-to-memory mapping, highlighting the importance of neural oscillations for the interaction between visual and memory domains. |
Craig G. Richter; Mariana Babo-Rebelo; Denis Schwartz; Catherine Tallon-Baudry In: NeuroImage, vol. 146, pp. 951–958, 2017. @article{Richter2017, A fundamental feature of the temporal organization of neural activity is phase-amplitude coupling between brain rhythms at different frequencies, where the amplitude of a higher frequency varies according to the phase of a lower frequency. Here, we show that this rule extends to brain-organ interactions. We measured both the infra-slow (~0.05 Hz) rhythm intrinsically generated by the stomach – the gastric basal rhythm – using electrogastrography, and spontaneous brain dynamics with magnetoencephalography during resting-state with eyes open. We found significant phase-amplitude coupling between the infra-slow gastric phase and the amplitude of the cortical alpha rhythm (10–11 Hz), with gastric phase accounting for 8% of the variance of alpha rhythm amplitude fluctuations. Gastric-alpha coupling was localized to the right anterior insula, and bilaterally to occipito-parietal regions. Transfer entropy, a measure of directionality of information transfer, indicates that gastric-alpha coupling is due to an ascending influence from the stomach to both the right anterior insula and occipito-parietal regions. Our results show that phase-amplitude coupling so far only observed within the brain extends to brain-viscera interactions. They further reveal that the temporal structure of spontaneous brain activity depends not only on neuron and network properties endogenous to the brain, but also on the slow electrical rhythm generated by the stomach. |
2016 |
Stephen M. Lee; Alicia Peltsch; Maureen Kilmade; Donald C. Brien; Brian C. Coe; Ingrid S. Johnsrude; Douglas P. Munoz Neural correlates of predictive saccades Journal Article In: Journal of Cognitive Neuroscience, vol. 28, no. 8, pp. 1210–1227, 2016. @article{Lee2016, Every day we generate motor responses that are timed with external cues. This phenomenon of sensorimotor synchronization has been simplified and studied extensively using finger tapping sequences that are executed in synchrony with auditory stimuli. The predictive saccade paradigm closely resembles the finger tapping task. In this paradigm, participants follow a visual target that “steps” between two fixed locations on a visual screen at predictable ISIs. Eventually, the time from target appearance to saccade initiation (i.e., saccadic RT) becomes predictive with values nearing 0 msec. Unlike the finger tapping literature, neural control of predictive behavior described within the eye movement literature has not been well established and is inconsistent, especially between neuroimaging and patient lesion studies. To resolve these discrepancies, we used fMRI to investigate the neural correlates of predictive saccades by con- trasting brain areas involved with behavior generated from the predictive saccade task with behavior generated from a reactive saccade task (saccades are generated toward targets that are unpredictably timed). We observed striking differences in neural recruitment between reactive and predictive conditions: Reactive saccades recruited oculomotor structures, as predicted, whereas predictive saccades recruited brain structures that support tim- ing inmotor responses, such as the crus I of the cerebellum, and structures commonly associated with the default mode network. Therefore, our results were more consistent with those found in the finger tapping literature. |
Samantha W. Michalka; Maya L. Rosen; Lingqiang Kong; Barbara G. Shinn-Cunningham; David C. Somers Auditory spatial coding flexibly recruits anterior, but not posterior, visuotopic parietal cortex Journal Article In: Cerebral Cortex, vol. 26, no. 3, pp. 1302–1308, 2016. @article{Michalka2016, Audition and vision both convey spatial information about the environment, but much less is known about mechanisms of auditory spatial cognition than visual spatial cognition. Human cortex contains >20 visuospatial map representations but no reported auditory spatial maps. The intraparietal sulcus (IPS) contains several of these visuospatial maps, which support visuospatial attention and short-term memory (STM). Neuroimaging studies also demonstrate that parietal cortex is activated during auditory spatial attention and working memory tasks, but prior work has not demonstrated that auditory activation occurs within visual spatial maps in parietal cortex. Here, we report both cognitive and anatomical distinctions in the auditory recruitment of visuotopically mapped regions within the superior parietal lobule. An auditory spatial STM task recruited anterior visuotopic maps (IPS2-4, SPL1), but an auditory temporal STM task with equivalent stimuli failed to drive these regions significantly. Behavioral and eye-tracking measures rule out task difficulty and eye movement explanations. Neither auditory task recruited posterior regions IPS0 or IPS1, which appear to be exclusively visual. These findings support the hypothesis of multisensory spatial processing in the anterior, but not posterior, superior parietal lobule and demonstrate that recruitment of these maps depends on auditory task demands. |
Mark D. Lescroart; Nancy Kanwisher; Julie D. Golomb No evidence for automatic remapping of stimulus features or location found with fMRI Journal Article In: Frontiers in Systems Neuroscience, vol. 10, pp. 53, 2016. @article{Lescroart2016, The input to our visual system shifts every time we move our eyes. To maintain a stable percept of the world, visual representations must be updated with each saccade. Near the time of a saccade, neurons in several visual areas become sensitive to the regions of visual space that their receptive fields occupy after the saccade. This process, known as remapping, transfers information from one set of neurons to another, and may provide a mechanism for visual stability. However, it is not clear whether remapping transfers information about stimulus features in addition to information about stimulus location. To investigate this issue, we recorded BOLD fMRI responses while human subjects viewed images of faces and houses (two visual categories with many feature differences). Immediately after some image presentations, subjects made a saccade that moved the previously stimulated location to the opposite side of the visual field. We then used a combination of univariate analyses and multivariate pattern analyses to test whether information about stimulus location and stimulus features were remapped to the ipsilateral hemisphere after the saccades. We found no reliable indication of stimulus feature remapping in any region. However, we also found no reliable indication of stimulus location remapping, despite the fact that our paradigm was highly similar to previous fMRI studies of remapping. The absence of location remapping in our study precludes strong conclusions regarding feature remapping. However, these results also suggest that measurement of location remapping with fMRI depends strongly on the details of the experimental paradigm used. We highlight differences in our approach from the original fMRI studies of remapping, discuss potential reasons for the failure to generalize prior location remapping results, and suggest directions for future research. |
E. Oberwelland; Leonhard Schilbach; I. Barisic; Sarah C. Krall; K. Vogeley; Gereon R. Fink; B. Herpertz-Dahlmann; Kerstin Konrad; Martin Schulte-Rüther Look into my eyes: Investigating joint attention using interactive eye-tracking and fMRI in a developmental sample Journal Article In: NeuroImage, vol. 130, pp. 248–260, 2016. @article{Oberwelland2016, Joint attention, the shared attentional focus of at least two people on a third significant object, is one of the earliest steps in social development and an essential aspect of reciprocal interaction. However, the neural basis of joint attention (JA) in the course of development is completely unknown. The present study made use of an interactive eye-tracking paradigm in order to examine the developmental trajectories of JA and the influence of a familiar interaction partner during the social encounter. Our results show that across children and adolescents JA elicits a similar network of "social brain" areas as well as attention and motor control associated areas as in adults. While other-initiated JA particularly recruited visual, attention and social processing areas, self-initiated JA specifically activated areas related to social cognition, decision-making, emotions and motivational/reward processes highlighting the rewarding character of self-initiated JA. Activation was further enhanced during self-initiated JA with a familiar interaction partner. With respect to developmental effects, activation of the precuneus declined from childhood to adolescence and additionally shifted from a general involvement in JA towards a more specific involvement for self-initiated JA. Similarly, the temporoparietal junction (TPJ) was broadly involved in JA in children and more specialized for self-initiated JA in adolescents. Taken together, this study provides first-time data on the developmental trajectories of JA and the effect of a familiar interaction partner incorporating the interactive character of JA, its reciprocity and motivational aspects. |
Andrea Phillipou; Larry Allen Abel; David Jonathan Castle; Matthew Edward Hughes; Richard Grant Nibbs; Caroline T. Gurvich; Susan Lee Rossell Resting state functional connectivity in anorexia nervosa Journal Article In: Psychiatry Research: Neuroimaging, vol. 251, pp. 45–52, 2016. @article{Phillipou2016, Anorexia Nervosa (AN) is a serious psychiatric illness characterised by a disturbance in body image, a fear of weight gain and significantly low body weight. The factors involved in the genesis and maintenance of AN are unclear, though the potential neurobiological underpinnings of the condition are of increasing interest. Through the investigation of functional connectivity of the brain at rest, information relating to neuronal communication and integration of information that may relate to behaviours and cognitive symptoms can be explored. The aim of this study was to investigate functional connectivity of the default mode network, and sensorimotor and visual networks in AN. 26 females with AN and 27 healthy control participants matched for age, gender and premorbid intelligence underwent a resting state functional magnetic resonance imaging scan. Default mode network functional connectivity did not differ between groups. AN participants displayed reduced functional connectivity between the sensorimotor and visual networks, in comparison to healthy controls. This finding is discussed in terms of differences in visuospatial processing in AN and the distortion of body image experienced by these individuals. Overall, the findings suggest that sensorimotor and visual network connectivity may be related to visuospatial processing in AN, though, further research is required. |
Marieke E. Nieuwenhuijzen; Eva W. P. Borne; Ole Jensen; Marcel A. J. Gerven Spatiotemporal dynamics of cortical representations during and after stimulus presentation Journal Article In: Frontiers in Systems Neuroscience, vol. 10, pp. 42, 2016. @article{Nieuwenhuijzen2016, Visual perception is a spatiotemporally complex process. In this study, we investigated cortical dynamics during and after stimulus presentation. We observed that visual category information related to the difference between faces and objects became apparent in the occipital lobe after 63 ms. Within the next 110 ms, activation spread out to include the temporal lobe before returning to residing mainly in the occipital lobe again. After stimulus offset, a peak in information was observed, comparable to the peak after stimulus onset. Moreover, similar processes, albeit not identical, seemed to underlie both peaks. Information about the categorical identity of the stimulus remained present until 677 ms after stimulus offset, during which period the stimulus had to be retained in working memory. Activation patterns initially resembled those observed during stimulus presentation. After about 200 ms, however, this representation changed and class-specific activity became more equally distributed over the four lobes. These results show that, although there are common processes underlying stimulus representation both during and after stimulus presentation, these representations change depending on the specific stage of perception and maintenance. |
Pavan Ramkumar; Bruce C. Hansen; Sebastian Pannasch; Lester C. Loschky Visual information representation and rapid-scene categorization are simultaneous across cortex: An MEG study Journal Article In: NeuroImage, vol. 134, pp. 295–304, 2016. @article{Ramkumar2016, Perceiving the visual world around us requires the brain to represent the features of stimuli and to categorize the stimulus based on these features. Incorrect categorization can result either from errors in visual representation or from errors in processes that lead to categorical choice. To understand the temporal relationship between the neural signatures of such systematic errors, we recorded whole-scalp magnetoencephalography (MEG) data from human subjects performing a rapid-scene categorization task. We built scene category decoders based on (1) spatiotemporally resolved neural activity, (2) spatial envelope (SpEn) image features, and (3) behavioral responses. Using confusion matrices, we tracked how well the pattern of errors from neural decoders could be explained by SpEn decoders and behavioral errors, over time and across cortical areas. Across the visual cortex and the medial temporal lobe, we found that both SpEn and behavioral errors explained unique variance in the errors of neural decoders. Critically, these effects were nearly simultaneous, and most prominent between 100 and 250 ms after stimulus onset. Thus, during rapid-scene categorization, neural processes that ultimately result in behavioral categorization are simultaneous and co-localized with neural processes underlying visual information representation. |